Радиатор: устройство и принцип работы

Устройство радиатора охлаждения

Основная функция этого устройства — отведение тепла от нагретых веществ. Это можно обеспечить конструктивной особенностью радиатора и материалами из чего он сделан. Также, для создания наилучшего эффекта охлаждения, место монтажа должно быть таким, где устройство встречается с большим потоком воздушного сопротивления. Поэтому на всех автомобилях, вне зависимости от марки и модели, радиатор системы охлаждения устанавливается спереди перед двигателем и, поэтому элементы кузова перед радиатором делают щелевым (решетка радиатора).

Есть автомобили, в которых мотор устанавливается сзади. Даже при таком расположении ДВС, радиатор ставят спереди. Единственное, приходится прокладываться длинные магистрали для циркуляции жидкости. На спортивных авто можно встретить конструкцию, когда ДВС и радиатор находятся сзади, но по бокам кузова есть воздухозаборники.

Из чего состоит радиатор системы охлаждения

Конструкция автомобильного радиатора может быть нескольких видов, но основная схема такая, как представлена на рисунке.

а — сам радиатор; б — паровой клапан в открытом виде; в -воздушный клапан в открытом положении.

  1. Верхний бачок.
  2. Верхний патрубок.
  3. Пробка горловины радиатора.
  4. Пароотводная труба.
  5. Алюминиевые или латунные трубки, соединяющие верхний 1 и нижний 7 бачки.
  6. Пластины. Они припаяны к трубкам 5. Служат для увеличения площади поверхностного охлаждения.
  7. Нижний бачок.
  8. Патрубок для соединения радиатора и помпы. Некоторые модификации имеют на патрубке сливной кран.
  9. Крепежные элементы.

Пластины 6 — это сердцевина радиатора. Основной элемент теплообменного процесса. Основная часть сердцевин — это бесшовные трубки с толщиной 0,15 мм. Вокруг трубки есть медная или алюминиевая лента. Горячая жидкость проходит через труби и охлаждается.

Классификация по типу сердцевин:

  1. Радиаторы с трубчатыми сердцевинами.
  2. Радиаторы с пластинчатыми сердцевинами.
  3. Радиаторы с трубчато-ленточными сердцевинами.

Устройство парового 11 и воздушного 12 клапанов радиатора:

  • 10-пружина. Упругость пружины от 1250 до 2000 грамм. Клапана и пружина с такой упругостью позволяет увеличить давление в охлаждающей циркуляционной системе и увеличить порог закипания жидкости до 110-120 градусов. Таким способом, объем охлаждающей жидкости не такой уж большой в современных двигателях.
  • Пружинка воздушного клапана имеет упругость от 50 до 100 грамм.

Функция воздушного клапана — пропускать воздух внутрь радиатора, если охлаждающая жидкость (вода, тосол, антифриз) закипела и остыла, и появился конденсат.

В системе возникает избыточно давление и парообразование при нагреве жидкости. Крышка с клапаном сама разряжает давление вне зависимости от того, какой атмосферное давление на улице. Так как в горах низкое атмосферное давление, то жидкость охлаждения закипает быстрее, чем на равнине. Воздушный клапан защищает радиатор от разрушения, которое может возникнуть от разницы давлений в самом радиатор и на улице.

На пробке есть клапаны. При закипании охлаждающей жидкости (ОЖ) открывается выпускной клапан на крышке. Пар при этом выводится через пароотводную трубу. Когда в радиаторе жидкость остывает, давление падает и, если давление в радиаторе стало ниже атмосферного 1 Атм (килограмм на 1 квадратный сантиметр), то открывается впускной клапан и запускает воздух, чтобы не создавался вакуум.

Чтобы слить ОЖ из системы охлаждения закрытого типа, надо открутить сливной болт или открыт краник, и открыть крышку. Для полного слива жидкости из системы охлаждения двигателя, в на блоке цилиндров есть специальный сливной болт под ключ на 13 (ВАЗ).

Устройство и назначение радиатора системы охлаждения двигателя

Избыточное радиаторное тепло удаляется в окружающее пространство. Этому способствует его особая конструкция. Основными элементами изделия являются:

  • верхний бачок;
  • нижний бачок;
  • сердцевина;
  • элементы крепления.

Наиболее популярными материалами для изготовления радиаторов являются:

  • медь;
  • алюминий;
  • медные сплавы;
  • сплавы на основе алюминия.

Сердцевина изделия изготавливается в разном виде. Встречается трубчатый тип, бывает пластинчатый вариант, а также выпускается в сотовом виде. Чаще всего можно встретить трубчатую конструкцию. Внутри располагаются вертикальные трубки с сечением в виде овала либо круга. Они пропускаются сквозь ряды тонких пластин, установленных горизонтально. Они припаяны к обоим бачкам.

Предпочтительными являются трубки овального сечения. У них увеличена поверхность охлаждения, а это способствует быстрому теплообмену. Также, если случается нежелательное перемерзание жидкости, то овал лишь деформируется, а круг способен разорваться, разгерметизировав систему.

Реже встречаются пластинчатые варианты исполнения. В них ОЖ перемещается по объему, который сформирован двумя спаянными друг с другом фигурными пластинами. Нижняя торцевая часть и верхняя соединены с резервуарами. Охлаждающий воздух перемещается по внешней части пластин. Чтобы увеличить поверхность охлаждения, пластины изготовлены гофрированными. Таким образом удается скорей проводить остывание, чем у трубчатых аналогов.

Однако с пластинами больше встречаются недостатки. Они проявляются в быстром загрязнении, необходимости наличия большего числа спаянных участков, применении более тщательного ухода.

Сотовые конструкции сердцевин предполагают наличие горизонтальных круглых трубок для воздуха, которые снаружи омываются анитифризом. Для обеспечения комфортной спайки таких систем трубки развальцовываются на концах до шестиугольной формы. Такой формат обеспечивает большую, чем в аналогах охлаждающуюся поверхность.

Верхняя часть бочка, расположенного выше, оснащена припаянной горловиной. Снаружи она закрыта специальной пробкой с паровым клапаном. Также к бачку подходит небольшой патрубок, который нужно соединять с гибким шлангом. Через него подводится охлаждающая жидкость.

В нижнем бачке имеется отводящий патрубок с гибким шлангом. Для качественной фиксации использованы винтовые хомуты. Подобная конструкция позволяет иметь небольшое смещение блока относительно охладителя.

Пробка помогает изолировать систему от внешней среды. В ее конструкции присутствуют такие элементы:

  • металлический корпус;
  • паровой клапан;
  • воздушный клапан;
  • блокирующая пружина.

При возможном кипении системы охлаждения повышается уровень давления внутри всех резервуаров. По достижении определенного критического значения, которое установлено производителем, происходит открытие парового клапана, и избыточное давление стравливается в атмосферу. Это является нормальным событием.

В ином случае срабатывает воздушный клапан. После остановки автомобиля происходит охлаждение жидкости, во время которого пар конденсируется и в системе давление снижается ниже атмосферного. Избежать сдавливания трубок вовнутрь помогает впускной клапан с крышки радиатора. Он после открытия пропускает немного воздуха внутрь, обеспечивая баланс внутреннего и внешнего давления.

Компенсировать необходимый рабочий объем антифриза помогает наличие расширительного бачка. В нем должна сохраняться жидкость в установленном производителем количестве

Важно мониторить уровень жидкости в расширительной емкости

В определенных моделях радиаторов отсутствует заливной патрубок. Добавлять антифриз до требуемого объема тогда следует через расширительный бак. Осуществляется контроль заполненности лишь на холодном моторе.

О принципе работы системы

Коснемся этого вопроса поверхностно, поскольку более подробно он описывается в материале «схема циркуляции охлаждающей жидкости». Теплообмен осуществляется антифризом, который циркулирует по всей системе под давлением. Оно создается работой водяного насоса.

Когда мотор еще холодный, то движение антифриза происходит по малому кругу. В этом процессе еще не принимает участия радиатор. Именно таким образом удается быстрее достичь требуемого температурного режима для силового агрегата. Когда температура достигает нужной точки, открывается термостат, начиная движение антифриза по большому кругу с заходом в радиатор.

Процесс охлаждения становится более интенсивным, потому что принимает участие та рабочая жидкость, которая находится в радиаторе и ранее не была использована. Для снижения температуры в самом радиаторе применяется атмосферный воздух из окружающей среды.

Радиатор в системе жидкостного охлаждения

Главной задачей элемента является отвод тепла от силовой установки в атмосферу путем охлаждения жидкости, которая проходит внутри по каналам. Для обеспечения лучшего отвода тепла устройство монтируется в таком месте, где отмечен наилучший обдув встречным воздушным потоком в процессе движения автомобиля. Типичным местом установки в подкапотном пространстве является область за радиаторной решеткой спереди автомобиля. Стоит отметить, что даже в автомобилях с задним расположением ДВС радиатор зачастую устанавливается спереди. Отличием становится прокладывание более длинных магистралей системы охлаждения к двигателю.

Существуют и другие места для монтажа устройства охлаждения, но встречаются реже. Автомобили с заднемоторной компоновкой могут иметь радиатор, который установлен вдоль боковой стенки. Такое решение можно встретить на спортивных автомобилях, которые имеют сразу два радиатора охлаждения, расположенные вдоль обеих стенок моторного отсека. Эффективный обдув воздухом реализован путем использования воздухозаборников. Указанный воздухозаборник располагают в задней части машины на боковых стенках.

Биметаллические радиаторы отопления

Теперь перейдем к рассмотрению биметаллических батарей отопления, которые появились на рынке сравнительно недавно. Они изготавливаются из двойного материала. При производстве таких радиаторов используется в большинстве случаев сталь и алюминий. Они обладают такими достоинствами, как:


Устройство биметаллического радиатора отопления.

  1. Высокая прочность конструкции. Внутри биметаллических радиаторов находится непосредственно сталь. Она может выдерживать любые нагрузки и переносить серьезные гидравлические удары до 40 атмосфер. Поэтому прослужить такие радиаторы могут до 25 лет.
  2. Высокая теплоотдача. Алюминий обладает превосходными показателями по теплопроводности. Именно поэтому ими покрыта внешняя часть биметаллических радиаторов. Благодаря этому батареи работают эффективно.
  3. прекрасный внешний вид. Поскольку внешний слой выполняется из алюминия, он обеспечивает таким радиаторам превосходные эстетические характеристики. С ними интерьер дома только выиграет.
  4. Способны противостоять коррозии. Многие производители биметаллических батарей покрывают их внутреннюю часть тефлоном или цирконием. Это позволяет им не выходит из строя слишком быстро из-за низкого качества теплоносителя.
  5. Компактность и легкость в монтаже. Биметаллические изделия являются небольшими и легкими, поэтому их не сложно устанавливать, а место под них удастся найти в любой комнате своего жилища.

http:

Ни один отопительный прибор не лишен недостатков. Поэтому настало время перечислить то, какими же минусами обладают биметаллические радиаторы. Они следующие:

  1. Невысокая пропускная способность. Из-за этого недостатка нагреваются биметаллические батареи достаточно долго, ведь необходимое количество теплоносителя попадет в каждую из секции крайне медленно.
  2. Высокая цена. Покупка биметаллических батарей обойдется в солидный бюджет.

Размещение термоголовок

Датчики могут быть выносными и встроенными, регулировка может быть прямой или дистанционной.

Балансировочные клапаны со встроенным датчиком более распространены. Располагаются они путем встраивания механизма в трубу подающего контура. Установка радиаторов должна проектироваться с учетом следующих нюансов:

  • если придется монтировать регулятор вертикально, нужно выбирать устройство другого вида, так как конвекция теплого воздуха сильно скажется на точности автоматической балансировки. Регулировка будет осуществляться с большой погрешностью, так как будет основываться на теплом воздухе рядом с радиатором, а не на температуре основной массы воздуха в помещении;
  • датчик должен быть установлен строго горизонтально (параллельно полу).

Термоголовка для алюминиевых радиаторов с выносным датчиком температуры используется в следующих случаях:

  • радиаторы смонтированы таким образом, что сильфон термостата наглухо завешен занавеской, и доступ воздуха к механизму затруднен;
  • потоки теплого воздуха будут оказывать влияние на функционирование встроенного термодатчика;
  • радиатор располагается под окном, из которого сквозит холодный воздух с улицы;
  • вертикального расположения термостата отопления не избежать.

Выносной термодатчик соединяется с основной конструкцией термоголовки с помощью тонкой трубки достаточной длины.

Установка дистанционного электрического управления предполагается в тех ситуациях, когда отопительные приборы смонтированы в недоступных для удобной ручной регулировки местах. Например, если встраиваемые в пол конвекторы закрыты декоративной решеткой.

При монтаже термоголовки на биметаллические радиаторы или приборы другого типа нужно следовать главному правилу: чтобы датчик адекватно реагировал на изменение температуры воздуха в помещении, этот воздух должен иметь возможность свободно циркулировать вокруг чувствительной части механизма.

Лучшее  решение – установка термостата параллельно полу, так как в этом случае на него не будут действовать теплые потоки воздуха от трубы и самого отопительного прибора (горячий воздух идет вертикально вверх). Еще одно правило, которое должно быть соблюдено: стрелка на корпусе устройства должна быть направлена в сторону потока горячей воды в контуре, иначе все сразу придет в негодность.

Выносной датчик необходим в следующих ситуациях:

  • установка прибора отопления производится в нише;
  • глубина прибора превышает 16 см;
  • термоголовка для отопительных радиаторов закрыта шторой;
  • над радиатором имеется широкий подоконник, установленный на расстоянии менее 10 см от верхнего края отопительного прибора;
  • имеет место вертикальное расположение механизма балансировки.

Из всех этих условий именно занавески оказывают наибольшее влияние на эффективность балансировки. Они становятся экраном, не позволяющим датчику реагировать на условия в комнате. Их можно отодвинуть, чтобы дать воздуху доступ к сильфону, но выносной датчик решит эту проблему проще..

Поломки и ремонт

Радиаторы охлаждения двигателя долговечны, но не являются неуязвимыми – они также периодически выходят из строя. Радиаторы двигателя могут загрязняться мусором и различными отложениями из системы охлаждения.

Они изнашиваются от воздействия агрессивных реагентов в условиях зимней эксплуатации автомобиля, часто пробиваются камнями и выходят из строя по другим причинам. Радиатор может пострадать из-за поломки другого элемента системы охлаждения (температурного датчика, помпы, клапана пробки и проч.).

Если радиатор поврежден, можно пойти двумя путями – заменить его или отремонтировать.

При незначительном повреждении радиатора его можно запаять, но при большой площади повреждения целесообразнее будет замена.

Согласно статистике в 80% случаев радиатор можно восстановить. Наиболее распространенная неисправность радиатора – засорение сот, из-за чего ухудшается циркуляция теплоносителя, что в последствии может привести к перегреву двигателя.

В таком случае достаточно промыть их под проточной водой. Нужно отсоединить радиатор внизу, а потом сверху направить в него как можно более мощную струю воды, что позволит вымыть все пробки.

Если радиатор начал протекать, существуют специальные герметики внешнего и внутреннего применения, позволяющие быстро устранить данную проблему.

Устройства, похожие на современный радиатор, устанавливались на самых ранних версиях автомобилей с ДВС, так как без указанного элемента охлаждения работа силовой установки становится попросту невозможной.  Это устройство напрямую отвечает за поддержание нормальной рабочей температуры двигателя в строго отведенных рамках. Такая защита бережет мотор от перегрева, который неминуемо выведет практически любой двигатель внутреннего сгорания из строя.

Схема, элементы системы охлаждения и их работа

Основные элементы, из которых состоит схема системы охлаждения двигателя, встречаются и схожи у разных типов моторов: инжекторных, дизельных и карбюраторных.

Общая схема жидкостной системы охлаждения двигателя

Жидкостное охлаждение мотора дает возможность в равной мере забирать тепло со всех узлов и деталей двигателя не зависимо от степени тепловой нагрузки. Двигатель с использованием водяного охлаждения создает меньше шума, чем двигатель с воздушным охлаждением, обладает большей скоростью прогрева при пуске.

Система охлаждения двигателя содержит следующие детали и элементы:

  • рубашка охлаждения (водяная рубашка);
  • радиатор;
  • вентилятор;
  • термостат;
  • жидкостный насос (помпа);
  • расширительный бачок;
  • соединительные патрубки и сливные краны; 
  • отопитель салона.
  • Рубашкой охлаждения («водяной рубашкой») принято считать сообщающиеся между двойными стенками полости в тех местах, где наиболее нужен вывод избыточного тепла.
  • Радиатор. Предназначен для рассеивания тепла в окружающую атмосферу. Он конструктивно состоит из множества изогнутых трубочек с дополнительными ребрами для увеличения теплоотдачи.
  • Вентилятор, включающийся электромагнитной, реже гидравлической муфтой, при срабатывании температурного датчика охлаждающей жидкости усиливает набегающий на авто воздушный поток. Вентиляторы с “классическим” (постоянно включенным) ременным приводом встречаются в наши дни редко, в основном, на старых автомобилях.
  • Центробежный жидкостный насос (помпа) в системе охлаждения обеспечивает постоянную циркуляцию охлаждающей жидкости. Привод помпы чаще всего реализован с помощью ремня или шестерней. Двигатели с турбонаддувом и с непосредственным впрыском топлива, как правило, снабжены дополнительной помпой.
  • Термостат – главный узел, регулирующий потоки охлаждающей жидкости, устанавливается обычно между входным патрубком радиатора и «водяной рубашкой» двигателя, конструктивно выполнен в виде биметаллического или электронного клапана. Назначение термостата – поддержание заданного рабочего температурного диапазона охлаждающей жидкости при всех режимах работы двигателя.
  • Радиатор отопителя очень похож на радиатор системы охлаждения меньших размеров и расположен в салоне авто. Принципиальное отличие состоит в том, что радиатор отопителя передает тепло в салон, а радиатор системы охлаждения – в окружающую среду.

Принцип работы

Принцип работы жидкостного охлаждения двигателя состоит в следующем: цилиндры окружены «водяной рубашкой» из охлаждающей жидкости, отбирающей лишнее тепло и переносящей его к радиатору, откуда оно передается в атмосферу. Жидкость, непрерывно циркулируя, обеспечивает оптимальную температуру двигателя.

Принцип работы системы охлаждения двигателя

Охлаждающие жидкости – антифризы, тосол и вода – в процессе эксплуатации образуют осадок и накипи, нарушающие нормальную работу всей системы.

Вода не бывает химически чистой в принципе (за исключением дистиллированной) – в ней содержатся примеси, соли и всевозможные агрессивные соединения. При повышенной температуре они выпадают в осадок и образуют накипь.

В отличие от воды антифризы не создают накипи, но в процессе эксплуатации разлагаются, а продукты распада отрицательным образом сказываются на работе механизмов: на внутренних поверхностях металлических элементов появляется коррозионный налет и наслоения органических веществ.

Кроме этого, в систему охлаждения могут попадать различные посторонние загрязняющие субстанции: масло, моющие средства или пыль. Также могут попасть и специальные герметики, используемые для аварийной заделки повреждений в радиаторах.

Все эти загрязнения оседают на внутренних поверхностях узлов и агрегатов. Они характеризуются плохой теплопроводностью и забивают тонкие трубки и соты радиатора, нарушая эффективную работу системы охлаждения, что приводит к перегреву двигателя.

Видео о том, как устроено охлаждение мотора, принцип работы и неисправности

Ещё кое-что полезное для Вас:

  • Плохо греет печка в салоне, причины, что делать и профилактика
  • Почему двигатель автомобиля не заводится: как найти причину
  • Радиатор охлаждения двигателя: устройство и принцип работы

Ссылки [ править ]

Эта статья требует дополнительных ссылок для проверки . Пожалуйста, помогите улучшить эту статью , добавив цитаты из надежных источников . Материал, не полученный от источника, может быть оспорен и удален. ( март 2010 г. ) ( Узнайте, как и когда удалить этот шаблон сообщения )
  1. ^ Рэнкин Кеннеди CE (1912). Книга об автомобиле . Кэкстон.
  2. ^ Керр, Джим. “Auto Tech: Radiator shutters” , autos.ca, 6 апреля 2011 г., по состоянию на 12 апреля 2011 г.
  3. ^ Tridon, Крышки радиатора
  4. ^ “Мерседес 35 л.с.” .
  5. ^ Альфред Прайс (2007). Руководство по Spitfire . Хейнс. ISBN 978-1-84425-462-0.
  6. ^ Майкл Донн (1981). Лидер неба (75-летие Rolls-Royce) . Фредерик Мюллер. ISBN 978-0-584-10476-9.
  7. ^ Наджар, Юсеф SH (ноябрь 1988). «Характеристики градирни с принудительной тягой с дизельными электростанциями». Теплообменная техника . 9 (4): 36–44. Bibcode1988HTrEn … 9 … 36N . DOI10.1080 / 01457638808939679 . ISSN 0145-7632 .

Устройство алюминиевой батареи

Рассматривая устройство алюминиевого радиатора отопления надо отметить, что конструкция батареи может быть цельной либо секционной.

Секционный алюминиевый обогреватель состоит из 3-4 отдельных секций. Как правило, в алюминий добавляют титан, кремний, цинк. Эти металлы делают изделие более прочным и устойчивым к разрыву и коррозии. Все секции соединяются друг с другом при помощи резьбового соединительного элемента. Для герметизации соединения используют силиконовые прокладки. Внутри радиаторы имеют полимерное покрытие для предотвращения возможности разрыва батареи.

Цельные алюминиевые батареи отопления состоят из профилей. Профили изготавливаются методом экструзии.

Что придает пластичности материалу. Между собой профили соединяются путем сварки. Такое соединение отличается высокой прочностью и надежностью. Как и секционные, цельные модели радиаторов внутри покрываются полимерным слоем.

В зависимости от способа производства выделяют радиаторы, изготовленные методом литья, методом экструзии и анодированные изделия (изготавливаются из алюминия более высокой степени очистки).

Технические характеристики радиаторов отопления из алюминия

В виду высоких технических характеристик многие решают купить алюминиевый радиатор для отопления квартиры. К основным техническим параметрам относятся:

  1. рабочее давление. Находится в пределах от 10 до 15 атмосфер. В жилых квартирах рабочее давление может превышать норму в 3-4 раза. В связи с этим в городских домах такие радиаторы устанавливают редко. А вот для частных домов – такой обогреватель будет идеальным решением;
  2. опрессовочное давление. Находится в пределах от 20 до 50 атмосфер;
  3. коэффициент теплоотдачи. Для стандартной секции он составляет 82-212 Вт;
  4. максимальная температура теплоносителя может достигать +120 градусов;
  5. одна секция может весить от 1 до 1,5 кг;
  6. емкость каждой секции от 0,25 до 0,46 л;
  7. расстояние между осями может быть 20, 35, 50 см. Есть модели, у которых данный параметр может достигать и 80 см.

Параметры к каждой модели радиатора производитель указывает в паспорте устройства. Учитывая на алюминиевые радиаторы отопления технические характеристики цена на них является вполне оправданной и зависит от типа батареи, количества секций и производителя.

Преимущества и недостатки алюминиевых радиаторов

Перед тем, как купить алюминиевые радиаторы отопления надо рассмотреть, какие преимущества и недостатки имеет данный прибор.

Главным достоинством батареи из алюминия можно назвать компактность и гораздо меньший вес, нежели у чугунных систем. Более подробно о чугунных радиаторах отопления можно прочитать здесь. Оборудование прогревается очень быстро и отлично передает тепло помещению. Срок службы достаточно долгий. Еще одним преимуществом можно назвать деление на секции — есть возможность подобрать нужную длину батареи. Надо отметить, что на алюминиевые радиаторы цена указывается за секцию. Что позволяет легко рассчитать примерную стоимость секционного прибора.

Поскольку оборудование малогабаритное и весит немного, устанавливать его легко. Монтаж можно осуществлять даже на гипсокартонную стену. Современные модели выглядят эстетично и стильно. Алюминий прост в обработке. Что дает возможность производителям экспериментировать с дизайном батареи. Можно подобрать вариант для любого интерьера. Больше всего алюминиевые радиаторы подходят для систем автономного отопления. Несмотря на высокие технические характеристики и массу преимуществ, на алюминиевые батареи отопления цена вполне демократичная.

К недостаткам алюминиевых радиаторов можно отнести низкую устойчивость к коррозии. А это может сильно сказываться на общем состоянии батареи. Алюминий по природе является достаточно активным металлом. Если оксидная пленка, покрывающая поверхность, будет повреждена, то защитный слой разрушится из-за выделения водорода. Для повышения антикоррозионных свойств используют полимерное покрытие. Если у батареи полимерного покрытия нет, то нельзя перекрывать краны на подводящих трубах. Иначе под воздействием давления батарея может разорваться.

Сегодня батареи из алюминия занимают лидирующее место в продажах отопительной техники.

Многие предпочитают покупать данный тип обогревательного прибора и из-за сравнительно невысокой стоимости. На алюминиевые радиаторы отопления цена за секцию в среднем составляет около 230-300 руб.

Какой радиатор лучше?

В большинстве случаев ответ на этот вопрос зависит от материальных возможностей автомобилиста. Медно-латунные модели поддаются недорогому ремонту. По сравнению с алюминиевыми аналогами они обладают лучшими теплообменными свойствами (коэффициент теплоотдачи медного – 401 Вт/(м*К), а алюминиевого – 202-236). Однако стоимость новой детали очень высокая из-за цены на медь. И еще один недостаток – большой вес (около 15 килограмм).

Алюминиевые радиаторы стоят дешевле, они легче по сравнению с медными вариантами (в районе 5 кг.), а также их срок службы больший. Зато их невозможно качественно отремонтировать.

Есть еще один вариант – купить китайскую модель. Они намного дешевле оригинальной детали для конкретной машины. Только основная проблема у большинства из них – короткий срок службы. Если алюминиевый радиатор справляется со своими функциями на протяжении 10-12 лет, китайский аналог – в три раза меньше (4-5 лет).

Подробности о поломках и обслуживании радиаторов смотрите в следующем видео:

Оценить публикацию

Заключение

В 2009 г. дизайнерский центр Semikron представил новую платформу на базе интеллектуальных силовых ключей SKiiP (рис. 11), предназначенную для использования в конверторах энергетических станций. Модульная конструкция, выбор режима охлаждения и возможность параллельного соединения базовых блоков позволяют использовать компоненты платформы для разработки преобразователей мощностью от 450 кВт до 2,5 МВт. Основные характеристики системы приведены в табл. 4. Новая разработка ориентирована в первую очередь на возобновляемые источники энергии, такие как ветроэнергетические и солнечные установки, а также малые гидроэлектростанции.

Рис. 11.
а) SKiiP RACK — базовый конструктив 4-квадрантного преобразователя;
б) внешний вид ячейки с жидкостным радиатором

Дизайн единичного модуля платформы SKiiP RACK позволяет ему работать в режиме воздушного и жидкостного охлаждения. Способ отвода тепла и конфигурация всей системы выбираются пользователем в зависимости от вида источника энергии и требуемой мощности.

Таблица 4. Основные характеристики базовой платформы SKiiP RACK
Тип генератораВоздушное охлаждениеЖидкостное охлаждение
1,5 МВт2,5 МВт1,5 МВт2,5 МВт
DFIG*SKiiP
в параллель
Iout, ASKiiP
в параллель
Iout, ASKiiP
в параллель
Iout, ASKiiP
в параллель
Iout, A
Выпрямитель16002110014701950
Инвертор1420172015251820
SG**SKiiP
в параллель
Iout, ASKiiP в
параллель
Iout, ASKiiP в
параллель
Iout, ASKiiP в
параллель
Iout, A
Выпрямитель11440321601135022400
Инвертор11500322501135022400
* — DFIG (Double Fed Induction Generator) — асинхронный генератор с двойным возбуждением;
** — SG (Synchronous Generator) — синхронный генератор.

Сборка SKiiP RACK включает все необходимые элементы монтажа, она может поставляться на раме или в шкафу в виде полностью законченной конструкции, имеющей силовые терминалы питания и выходов, а также штуцеры для подключения жидкостной системы охлаждения. Конструкция сборки содержит 3 вертикально расположенные ячейки, каждая из которых состоит из двух фазных блоков. Вес ячейки 26 кг, в звене постоянного тока применены полипропиленовые конденсаторы ELECTRONICON общей емкостью 3–5 мФ.

В режиме воздушного охлаждения SKiiP RACK дает возможность формировать 4-квадрантную систему мощностью до 1,5 МВт, вся сборка размещается в стандартном шкафу размером 600×600×1400 мм. При параллельном соединении ячеек с жидкостным охлаждением общая мощность инвертора достигает 2,5 МВт. В настоящее время в разработке находится платформа на базе компонентов SKiiP четвертого поколения, которая должна позволить увеличить токовые характеристики на 15–20% в тех же габаритах.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий