Выпускной коллектор
Итак, второй претендент, он также выполняет немаловажную роль – отвод сгоревших газов. После того как впускные клапана были закрыты, топливо сжимается и поджигается свечой зажигания – происходит мини взрыв, поршни идут вниз – открываются выпускные клапана и отводят сгоревшие газы.
Вот только после клапанов они должный выйти в глушитель, а собирает их, из каждого цилиндра как раз выпускной коллектор (также по одной трубе на цилиндр). Он также подсоединен своей широкой частью к головке блока, только (если утрировать) с другой стороны, далее по трубам газы собираются в одну большую, как правило, сначала стоит катализатор, который дожигает газы, затем после него уже идет глушитель (может стоять и отвод для турбины). После этого газы уходят дальше после в окружающую среду. Стоит упомянуть – этот тракт гасит не только отработанные газы, но и звук выхлопа! Точнее не он сам, а глушитель которую он передает «отработку».
Как вы понимаете выпускной коллектор, работает с высокими температурами, ведь зачастую выхлоп может разогреваться до 950 градусов Цельсия. Поэтому обязательно нужно применять металлы, да не простые, а тугоплавкие способные выдерживать высокие показатели «тепла».
В этот отводящий коллектор, зачастую вкручивают датчик, это «лямба-зонт» или кислородный датчик, он «следит» за содержанием кислорода и других газов в выхлопе.
Благодаря этому датчику корректируется подача топливной смеси через наш «подающий» коллектор, то есть получается взаимосвязь.
Выпускной тракт, обычно в автомобилях очень прочный, служит почти весь срок эксплуатации автомобиля.
World Of Man Dreams
Система изменения геометрии впускного коллектора является одной из востребованных технологий повышения мощности двигателя, экономии топлива, снижения токсичности отработавших газов.
Изменение геометрии впускного коллектора может быть реализовано двумя способами:
- изменением длины впускного коллектора;
- изменение поперечного сечения впускного коллектора.
В ряде случаев изменение геометрии впускного коллектора на одном двигателя осуществляется одновременно двумя способами.
Впускной коллектор переменной длины
Впускной коллектор переменной длины применяется в атмосферных бензиновых и дизельных двигателях для обеспечения лучшего наполнения камеры сгорания воздухом на всем диапазоне оборотов двигателя.
На низких оборотах двигателя требуется достижение максимального крутящего момента как можно быстрее, для чего используется длинный впускной коллектор. Высокие обороты выводят двигатель на максимальную мощность при коротком впускном коллекторе.
Впускной коллектор переменной длины используют в конструкции двигателей многие производители, некоторые дали системе собственные названия:
- Dual-Stage Intake, DSI от Ford;
- Differential Variable Air Intake, DIVA от BMW;
- Variable Inertia Charging System, VICS, Variable Resonance Induction System, VRIS от Mazda.
Регулирование длины впускного коллектора (переключение с одной длины на другую) производится с помощью клапана, входящего в состав системы управления двигателем.
Работа впускного коллектора переменной длины осуществляется следующим образом. При закрытии впускных клапанов во впускном коллекторе остается часть воздуха, которая совершает колебания с частотой пропорциональной длине коллектора и оборотам двигателя. В определенный момент колебания воздуха входят в резонанс, чем достигается эффект нагнетания – т.н. резонансный наддув. При открытии впускных клапанов воздушная смесь в камеры сгорания нагнетается с большим давлением.
В надувных двигателях впускной коллектор переменной длины не используется, т.к. необходимый объем воздуха в камере сгорания обеспечивается механическим и (или) турбокомпрессором. Впускной коллектор в таких двигателях очень короткий, что сокращает размеры двигателя и его стоимость.
Впускной коллектор переменного сечения
Впускной коллектор переменного сечения применяется как на бензиновых, так и на дизельных двигателях, в т.ч. оборудованных наддувом. При уменьшении поперечного сечения каналов впускного коллектора достигается увеличение скорости воздушного потока, лучшее смесеобразование и соответственно обеспечивается полное сгорание топливно-воздушной смеси, снижение токсичности отработавших газов.
Известными системами впуска переменного сечения являются:
- Intake Manifold Runner Control, IMRC, Charge Motion Control Valve, CMCV от Ford;
- Twin Port от Opel;
- Variable Intake System, VIS от Toyota;
- Variable Induction System, VIS от Volvo.
В системе впускной канал к каждому цилиндру разделен на два канала (отдельный канал на каждый впускной клапан), один из которых перекрыт заслонкой. Привод заслонки осуществляет вакуумный регулятор или электродвигатель, являющийся исполнительным устройством системы управления двигателем. При частичной нагрузке заслонки закрыты, топливно-воздушная смесь (двигатели с распределенным впрыском) или воздух (двигатели с непосредственным впрыском) поступает в камеру сгорания каждого из цилиндров по одному каналу. При этом создаются завихрения, которые обеспечивают лучшее смесеобразование. При уменьшении сечения впускного коллектора раньше вступает в работу система рециркуляции отработавших газов, тем самым повышается топливная экономичность двигателя.
При полной нагрузке заслонки впускного коллектора открываются, увеличивается подача воздуха (топливно-воздушной смеси) в камеры сгорания и соответственно повышается мощность двигателя.
На каких автомобилях чаще встречается данная проблема
Проблема с кодом P2004 может встречаться на различных машинах, но всегда есть статистика, на каких марках эта ошибка присутствует чаще. Вот список некоторых из них:
- Audi (Ауди а6, Ауди а8, Ауди q7)
- BMW
- Chrysler (Крайслер Себринг)
- Dodge (Додж Авенджер, Джорней, Калибр)
- Fiat (Фиат Браво)
- Ford (Форд Фокус, F-150)
- Honda
- Jeep (Джип Компасс, Патриот)
- Kia
- Lexus
- Mazda (Мазда 3, Мазда 6)
- Mercedes (Мерседес m272, ml350, w164, w203, w211)
- Nissan (Ниссан Альтима, Роуг, Теана)
- Skoda (Шкода Октавия)
- Ssangyong (Саньенг Актион)
- Subaru
- Suzuki
- Volkswagen (Фольксваген Пассат, Туран, Тигуан)
- Volvo
С кодом неисправности Р2004 иногда можно встретить и другие ошибки. Наиболее часто встречаются следующие: P0202, P2005, P2008, P2017, P2107.
Виды систем
Способы реализации технологии изменения геометрии впускного коллектора:
- регулировка длины впускного коллектора;
- регулировка поперечного сечения каналов впускного коллектора.
На некоторых моторах применяется симбиоз из двух видов систем. И в первом, и во втором случае регулировка осуществляется специальными заслонками. Разумеется, для достижения максимального эффекта длина и сечение впускных каналов должны были бы изменяться пропорционально увеличению оборотов двигателя, но данная технология слишком дорога для массового производства и используется только на автомобилях премиум-класса.
Переменная длина впуска
Названия системы, использующиеся некоторыми автопроизводителями:
- Форд – Dual-Stage Intake (DSI);
- БМВ – Differential Variable Air Intake (DIVA);
- Мазда – Variable Inertia Charging System (VICS), Variable Resonance Induction System, (VRIS).
Принцип работы системы достаточно прост. На низких оборотах заслонка большого канала закрыта, поэтому воздух поступает по длинному и более узкому пути. При повышении оборотов выше расчетной границы (обычно это 4000-4300 тыс. об/мин.) заслонка открывается, освобождая более короткий путь воздуху к цилиндру. Регулировка положения заслонки может осуществляться сервоприводом, управление которым лежит на плечах ЭБУ, либо с помощью вакуума. Вакуумный привод предполагает наличие вакуумного клапана, соединенного со впускным коллектором. При повышении оборотов разряжение на впуске увеличивается, что провоцирует втягивание мембраны и перемещение тяги заслонок.
Изменение поперечного сечения
- Форд – Intake Manifold Runner Control (IMRC), Charge Motion Control Valve (CMCV).
- Опель – Twin Port.
- Тойота – Variable Intake System (VIS).
- Вольво – Variable Induction System (VIS).
На рисунке представлено устройство системы Twin Port. Установленная во впускном коллекторе вихревая заслонка открывается только на высоких оборотах, увеличивая тем самым проходное сечение каналов. На рисунке слева вы можете увидеть, что когда заслонка закрыта, воздух поступает по одному из каналов, из-за чего в цилиндре создается большая турбулентность и топливо лучше перемешивается с воздухом. Также система изменения геометрии впускного коллектора на низких оборотах позволяет более эффективно задействовать систему рециркуляции отработавших газов. Как и в случае с изменением длины впуска, управляются заслонки вакуумом либо сервоприводом.
Проблемы и неисправности
Из особенностей эксплуатации двигателей с подобными системами можно выделить лишь появление люфтов приводов заслонок, из-за чего в работе двигателя появляется посторонний шум. Работа заслонок с подклиниванием приводит к потере мощности, увеличению расхода. В остальном поломки схожи с другими системами, в которых используются вакуумные регуляторы или сервоприводы.
Конструкция
Такое функционирование системы впуска обеспечивается использованием электроники. А это значит, что все составные элементы ее делятся на три основных категории:
- Следящие устройства (датчики)
- Блок управления (ЭБУ, он же ЭСУД)
- Исполнительные механизмы
Первые контролируют ряд параметров и на основе их показаний ЭБУ подает сигналы на исполнительные устройства, благодаря чему и корректируется количество подаваемого воздуха.
Система впуска Audi RS4
Следящих устройств, используемых в конструкции впускной системы – достаточно много. Она включает в себя такие датчики как:
Система впуска Audi RS4
- массового расхода воздуха или ДМРВ (расходомер);
- температуры воздуха в коллекторе;
- давления (атмосферного, в коллекторе);
- положения заслонок;
- положения клапана системы рециркуляции отработанных газов.
Это общий перечень следящих устройств, которые может включать система впуска. В определенных конструкциях моторов каких-то из них может и не быть. К примеру, на некоторых моторах ДМРВ не устанавливается, а его функцию выполняет датчик давления в коллекторе.
Основными из указанных следящих устройств являются ДМРВ и температурный датчик. Они подают на блок управления информацию о нагрузке на силовую установку. Остальные же датчики являются вспомогательными и обеспечивают информацией, на основе которой ЭБУ принимает более верные решения.
Датчик температуры воздуха в коллекторе
Поскольку впускная система, как и другие, управляется ЭБУ, то понятно, что она взаимодействует с рядом из них. Ее работа «переплетается» с системами:
- впрыска;
- рециркуляции отработанных газов;
- улавливания топливных паров.
Также она взаимодействует с усилителем тормозной системы (вакуумным).
Элементы впускной системы
Конструкция исполнительного механизма включает в себя ряд элементов, указанных выше, а также некоторые другие. Он включает в себя:
- заборник;
- фильтрующий элемент;
- дроссельный узел;
- коллектор;
- соединительные трубопроводы;
- резонатор.
В инжекторных системах с прямым впрыском исполнительный механизм включает в себя также впускные заслонки.
Коллектор в системе прямого впрыска автомобилей VW
Рекомендуем: Какое масло лучше заливать на зиму: топ 10 лучших марок
Форма и объемная эффективность
Одним из важнейших параметров впускного коллектора, определяющим эффективность, является его форма. Основное правило, которого придерживаются все инженеры, гласит, что впускной коллектор не должен иметь никаких угловатых форм, так как это спровоцирует перепады давления и, как следствие, худшее наполнение цилиндров воздухом или рабочей смесью. Поэтому, все коллекторы имеют сглаженные переходы между сегментами и округлые формы.
В подавляющем большинстве нынешних коллекторов применяют раннеры. Представляют они из себя отдельные трубы, расходящиеся от центрального входа коллектора на все имеющиеся впускные каналы в головке блока цилиндров. Их задача состоит в том, чтобы использовать такое явление, как резонанс Гельмгольца. Принцип работы конструкции выглядит следующим образом.
В момент, когда происходит всасывание, воздух проходит на весьма высокой скорости через открытый впускной клапан. Когда клапан закрывается, воздух, не успевший попасть в цилиндр, сохраняет большой импульс, а значит давит на клапан, в результате чего образуется зона высокого давления. Затем происходит выравнивание давления, с более низким давлением в коллекторе. Из-за влияния сил инерции, выравнивание происходит с колебаниями: вначале воздух попадает в раннер под давлением более низким, чем в коллекторе, затем под более высоким. Происходит сей процесс со скоростью звука, и до того, как впускной клапан откроется в очередной раз, колебания могут совершаться многократно.
Изменение давления вследствие резонансных колебаний воздуха тем больше, чем меньше диаметр раннера. Когда поршень движется вниз, давление на выходе раннера уменьшается. Затем этот низкий импульс давления доходит до входа коллектора, где превращается в импульс высокого давления, который проходит в обратном направлении через раннер и клапан, после чего клапан закрывается.
Для достижения максимального эффекта от резонанса, впускной клапан должен открываться в строго определенный момент, иначе результат будет обратный. Добиться этого довольно сложно. Газораспределительный механизм является динамическим узлом, и режим его работы находится в самой прямой зависимости от частоты вращения коленвала. Импульсы синхронизируются статично, синхронизация зависит от длины раннеров. Частично проблема решается тем, что длина подбирается под определенный диапазон оборотов, на которых достигается наибольший крутящий момент. Другой вариант — применение систем изменения геометрии впускного коллектора и электронного управления ГРМ.
Неисправности впускного коллектора
Общие проблемы с впускным коллектором включают в себя:
- подсос воздуха;
- утечки охлаждающей жидкости или масла;
- снижение потока из-за накопления углерода;
- проблемы с впускными регулирующими заслонками.
В некоторых двигателях впускной коллектор может корродировать или растрескиваться, вызывая утечку вакуума или охлаждающей жидкости. Треснувший коллектор должен быть заменен, если его нельзя безопасно отремонтировать.
Утечки охлаждающей жидкости
В некоторых автомобилях во впускном коллекторе имеются каналы для охлаждающей жидкости, которые могут протекать из-за плохих прокладок или повреждений. Например, эта проблема была довольно распространенной в старых двигателях GM V6.
Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора. Если коллектор поврежден — его необходимо заменить.
Подсос воздуха
Изношенные прокладки впускного коллектора (на фото) часто вызывают утечки вакуума. Это может привести к неровному холостому ходу, остановке, а также к включению индикатора Check Engine. При этом на более высоких оборотах двигатель может работать нормально.
Например, коды неисправностей OBD-II P0171 и P0174 часто вызваны утечками во впускном коллекторе. Если подсос вызван плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок. Посмотрите, например, это видео замене прокладок впускного коллектора на Рено Меган:
Часто источником подсоса воздуха может быть треснувший вакуумный шланг или патрубок, соединяющий впускной коллектор. В этом случае сломанный вакуумный шланг или патрубок необходимо заменить.
Иногда впускной коллектор может деформироваться, вызывая неправильное уплотнение прокладок. Деформированный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота.
Отложения углерода
В некоторых двигателях, например, Volkswagen TDI Diesel, отложения углерода внутри впускного коллектора могут вызвать недостаток мощности, пропуски зажигания, дым и увеличение расхода топлива.
Проблемы с отложением углерода чаще встречаются в двигателях с турбонаддувом. Одним из основных симптомов является отсутствие тяги. Забитый впускной коллектор может потребоваться снять и почистить вручную.
В некоторых случаях замена впускного коллектора может оказаться более разумным решением, чем его очистка. Есть много скрытых областей внутри коллектора, которые не могут быть очищены.
Проблемы с заслонками изменения геометрии впуска
Регулирующие заслонки обычно приводятся в действие электрическими или вакуумными исполнительными механизмами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать.
Вакуумный исполнительный механизм легко проверить с помощью ручного вакуумного насоса. Если вакуумный привод пропускает, его необходимо заменить. Вместо насоса можно использовать медицинский шприц.
Блок управления двигателя (ЭБУ) запускает вакуумные приводы, включая и выключая небольшие электромагнитные клапаны контроля вакуума. Эти соленоиды также часто выходят из строя. Соленоиды тоже легко проверить с помощью ручного вакуумного насоса.
Другой распространенной проблемой является случай, когда клапан изменения геометрии впуска залипает из-за накопления углерода или когда клапан деформирован. В этом случае коллектор необходимо заменить.
Например, проблемы с впускным коллектором (регулирующим клапаном) часто встречаются в некоторых двигателях VW / Audi. Volkswagen продлил гарантию на впускной коллектор для определенных автомобилей Audi / Volkswagen 2008-2011 модельного года с двигателями 2.0 TFSI с кодами двигателей CBFA и CCTA.
Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является общей проблемой. Посмотрите это видео о проверке клапана DISA в BMW:
Неисправности впускного коллектора
Такие проблемы встречаются крайне редко. Это связано с тем, что сам тракт состоит исключительно из труб, а во время работы он редко подвергается термическим или механическим нагрузкам.
Но если уже что-то случилось с данной деталью, то это настоящая головная боль. Это так, потому что проявляется она достаточно неоднозначно. Признаки очень похожи на неисправность мотора или топливной системы. На поломку впускного коллектора может указывать падение мощности мотора, нестабильные обороты или увеличенный расход топлива. Хотя встречаются и индивидуальные признаки, которые по-своему проявляются.
Для уверенности, что проблема именно с коллектором, нужно обратиться в сервисный центр и сделать глубокую диагностику. Только в этом случае можно выявить поломку коллектора, а если быть точнее, то одного из его элементов:
- Заслонки;
- Клапана управления;
- Засорение каналов;
- Разгерметизация на соединениях (например, отсоединилась трубка от завихрителя);
- Неисправность датчика коллектора.
Прежде чем приниматься за разборку узла, необходимо на 100 процентов убедиться, что проблема действительно в нем. Большинство поломок диагностируются проверкой каждой отдельной части или узла.
Устройство и принцип работы
Чтобы впускной коллектор выполнял все возложенные на него задачи, он должен иметь строго рассчитанную геометрическую форму. Например, для того, чтобы поток внутри не замедлялся, коллектор проектируется без углов и прямых линий. Плавные изгибы, округлая форма способствуют более мощному воздушному потоку.
Устройство впускного коллектора
На входе во впускной коллектор находится карбюратор или дроссельная заслонка, если речь идет об инжекторном двигателе. Центральный канал разделяется на отдельные рукава – раннеры, которые подходят к цилиндрам, а точнее, к впускным клапанам.
Топливные форсунки размещаются возле впускных клапанов (в системе распределенного впрыска) или в центральном канале, если установлен моновпрыск.
По форме впускного канала различают одноплоскостные и двухплоскостные:
- Одноплоскостные – только с одним каналом для прохождения воздуха или топливно-воздушной смеси. Эти коллекторы пропускают за единицу времени большое количество воздуха, а значит, позволяют двигателю развить максимально возможную мощность на высоких оборотах;
- Двухплоскостные – те, в которых канал разделен на две части. Они дают возможность получить больше отдачи мощности на низких и средних оборотах двигателя.
Материалы.
Изначально впускные коллекторы делались металлическими: из чугуна, стали, алюминия. Проблема таких конструкций не только в достаточно высокой цене, но и в значительном нагреве от цилиндров двигателя. Сегодня их в основном делают из специального термостойкого пластика, который обладает меньшей теплопроводностью, а значит, и меньше нагревает воздух внутри.
Принцип работы.
Основной принцип работы коллектора – подача воздуха на фазе впуска. Инициатором движения воздуха является сам двигатель. Когда поршень опускается, в камере сгорания над ним создается зона низкого давления. На фазе впуска, когда клапан открыт, опускающийся поршень затягивает воздух, как хороший насос. Таким образом, от центрального канала воздух поступает в нужный раннер, а из него – в камеру сгорания. На видео-3д анимации, ниже, наглядно показан принцип работы впускного коллектора с вихревыми клапанами.
Если на автомобиле установлен карбюратор или центральная форсунка, при втягивании воздуха в раннер, поток топлива (или топливно-воздушной смеси) поступает в нужный цилиндр. Благодаря тому, что поток внутри коллектора турбулентный, топливо лучше перемешивается с воздухом и, следовательно, лучше сгорает. Турбулентный воздушный поток проектируется в коллекторе специально: он быстрее движется и лучше наполняет цилиндры.
В автомобилях с распределенным впрыском форсунки установлены в раннерах коллектора перед впускными клапанами. В этом случае по коллектору движется только воздух, который смешивается с распыленным топливом перед самым входом в цилиндр двигателя. Здесь скорость и структура воздушного потока также важны, поскольку для качественного приготовления топливно-воздушной смеси остается меньше времени и места.
Резонансные колебания.
Чтобы усилить поток поступающего воздуха, внутренняя геометрия впускного коллектора рассчитывается так, чтобы образовался так называемый резонанс Гельмгольца. Примерная схема, как это работает:
- На фазе всасывания поршень мотора опускается вниз, создавая зону разрежения, и через открывшийся клапан в камеру сгорания на большой скорости заходит воздух;
- Однако объем раннера намного больше, чем объем цилиндра, поэтому весь воздух, который “взял разгон” в коллекторе, в камеру сгорания не попадает;
- Перед закрывшимся впускным клапаном создается зона повышенного давления, когда воздух по инерции продолжает движение вперед;
- Клапан всё еще закрыт, так что давление в раннере выравнивается, то есть происходит “откат”, а после него перед впускным клапаном опять образуется зона повышенного давления. Эти резонансные колебания воздуха зависят от формы и размера коллектора и рассчитываются под каждый двигатель отдельно.
Ремонт и обслуживание впускных коллекторов
Современный впускной коллектор — деталь сложная. Случаются с ней и поломки. Рассмотрим типичные.
Нарушения герметичности
Это первое, чем «болеют» системы впуска, впрочем как и многие другие узлы автомобиля. Вибрации, перепады влажности, давления и температур сказываются на резиновых (паранитовых и др.) уплотнениях, которых в сложных системах впуска достаточно много. Возможно дополнительное попадание воздуха в смесь, так называемый «подсос».
Подсос воздуха во впускном коллекторе может значительно повлиять на динамические показатели двигателя в целом. После восстановления герметичности работа двигателя нормализуется.
Прокладки впускного и выпускного коллекторов ВАЗ 2106
Загрязнение впускного коллектора
Впускной тракт время от времени необходимо проверять на предмет налета на стенках. Подобная проблема может довольно сильно повлиять на динамику автомобиля. Особенно часто засоряется коллектор на двигателях с системой рециркуляции выхлопных газов. В таких случаях необходимо произвести разборку и чистку устройства специальным составом.
Отложения на стенках элементов впускных коллекторов
Деформации и механические повреждения корпуса
Для производства коллекторов широко используют пластик и алюминий, а эти материалы, как известно, могут деформироваться из-за воздействия высоких температур. Пластик со временем трескается и рассыхается. Алюминиевые коллекторы вследствие вибраций могут лопнуть.
Элементы с сильно нарушенной геометрией подлежат замене. Алюминиевые детали можно заварить аргонодуговой сваркой.
Повышенная температура воздуха в впускном коллекторе
Причинами подобной проблемы могут быть:
- длительная работа на холостом ходу в условиях высокой температуры воздуха (например в пробках);
- неполадки системы охлаждения и повышение общей температуры двигателя;
- нарушение вентиляции моторного отсека вследствие засорения радиатора;
- ошибочное показание датчика температуры во впускном коллекторе;
- ошибки в прошивке блока управления.
Решением является проверка узлов системы охлаждения и диагностика электронных систем.
Хлопки во впускном коллекторе
Во время воспламенения топлива в цилиндрах двигателя должны соблюдаться условия герметичности (оба клапана должны быть плотно закрыты). При условии воспламенения топлива с открытым или слегка приоткрытым впускным клапаном топливно-воздушная смесь может воспламеняться в самом коллекторе, в результате чего слышны характерные «хлопки». Такие поломки довольно опасны — они могут привести к значительным повреждениям.
Причинами неисправности могут быть:
- нарушение системы зажигания;
- неправильно настроенный газораспределительный механизм;
- нарушения плотности посадки впускных клапанов;
- проблемы с образованием топливовоздушной смеси.
В подобных случаях необходимо провести комплексную диагностику двигателя для выявления причин хлопков.
Рассмотрим процедуру замены прокладки впускного коллектора на примере двигателя Шевролет Авео 2017 г.
1. До начала работ обесточить бортсеть автомобиля, сняв отрицательную клемму аккумулятора.
2. Демонтировать рычаги стеклоочистителей (необходимо только в случае с конкретным двигателем).
3. Снять пластиковые фиксаторы защелки 1 и винты 2, после чего удалить решетку воздухозаборника 3.
4. Выполнить опорожнение системы охлаждения, выкрутив сливную пробку радиатора 4.
5. Снять воздухопровод воздушного фильтра 5, открутив винты хомутов 6.
6. Снять трубку принудительной вентиляции картера 7.
7. Отсоединить коммуникации дросселя 8-11, снять сам дроссель 12, открутив винты 13.
8. Отсоединить трубку усилителя тормозов 14.
9. Выкрутить винты 16,17 кронштейна коллектора, демонтировать кронштейн 15.
10. Снять направляющую топливной форсунки, отсоединить шланг охлаждения дросселя 19, открутить болты коллектора 18.
11. Отодвинуть коллектор 20 в сторону, аккуратно снять прокладку 21.
12. Очистить и обезжирить посадочные места для новой прокладки, установить ее.
13. Собрать узлы впускной системы в обратном порядке разборки.
Обращайте внимание на порядок и силу утяжки ремонтируемых узлов. Затягивайте резьбовые соединения постепенно в порядке от центра к краю детали, либо крест-накрест
Правильная работа впускного коллектора гарантирует длительную эксплуатацию двигателя. При минимальных знаниях и наборе необходимых инструментов текущее обслуживание или мелкий ремонт возможно произвести самостоятельно. Со сложными деталями и электроникой лучше обратиться в сервисный центр.
Особенности формы и длины патрубков ресивера
В последнее время инженеры придают особое внимание данным параметрам коллектора. В конструкции канала следует исключать острые углы и резкие искривления
В данных местах топливо, что смешано с воздухом, будет однозначно оседать на стенках. Поэтому большинство автопроизводителей практикуют установку таких ресиверов, где все каналы имеют равную длину, вне зависимости от удаленности от центра. Данная тенденция пошла от спортивных автомобилей.
Подобная конструкция позволяет исключить резонанс Гельмгольца. Поток смеси воздуха и бензина при открытии соответствующего клапана двигается четко по каналу ресивера в сторону цилиндра. Когда клапан закрывается, то воздух, который не успел пройти в камеру, продолжает давить на тарелку. Под воздействием высокого давления воздух стремится вернуться в верхнюю часть ресивера. В итоге образуется противоток в канале. Он прекращается, когда клапан открывается в следующий раз. смена направления потоков происходит на очень быстрой скорости. Как показали исследования, данная скорость близка к сверхзвуковой. Ведь, помимо закрытия и открытия клапанов, воздух будет стремиться менять направление из-за явления резонанса. Когда воздух ходит со стороны в сторону, это непременно приводит к потере мощности.
Впервые ресиверы, что были оптимизированы по резонансу, стали использоваться на V-образных десятицилиндровых двигателях «Крайслер». А далее подобную схему начали практиковать и другие мировые производители.
Ремонт впускного коллектора
Хотя поломка данного элемента происходит достаточно редко, его ремонт является головной болью автомобилистов. Причиной тому – неоднозначность диагностики поломки, ведь зачастую все грешат на двигатель. Среди признаков поломки коллектора стоит отметить:
- существенное снижение мощности;
- увеличение расхода топлива;
- аритмичность работы системы.
Но в некоторых случаях могут быть индивидуальные признаки, что важно учитывать. Лучше проводить комплексную диагностику в автосервисе, что даст более точный результат поломки. Зачастую в коллекторе выходят из строя его заслонки
Кроме того, возможна поломка клапана управления. Если же наблюдается шум и треск в системе, то причиной этому является отсоединение трубки от завихрителя. Однако разбираться в этом стоит по факту
Зачастую в коллекторе выходят из строя его заслонки. Кроме того, возможна поломка клапана управления. Если же наблюдается шум и треск в системе, то причиной этому является отсоединение трубки от завихрителя. Однако разбираться в этом стоит по факту.
При ремонте для начала стоит разобрать данные с датчика коллектора. Он позволит убедиться в поломке элемента и даже определить ее причину. Далее необходимо снимать устройство, что делается в несколько шагов.
- Снижается давление в системе посредством отключения топливного насоса.
- Отключается аккумулятор и снимается декоративный кожух.
- Снимается воздушный фильтр.
- Отсоединяется дроссельный узел.
- Снимается сам впускной коллектор.
Важно! При отсоединении не стоит трогать крепежные заслонки. Они могут легко повредиться.. После чего начинается непосредственный ремонт устройства
После чего начинается непосредственный ремонт устройства
Важно отметить, что некоторые детали не могут быть отремонтированы. Среди них особенно проблемные заслонки и клапан управления, при их поломке необходимо приобретать новую деталь. Нередко выходит из строя сам датчик
Если он работает некорректно, то блок управления неправильно высчитывает параметры, что приводить к плохому формированию воздушно-топливной смеси
Нередко выходит из строя сам датчик. Если он работает некорректно, то блок управления неправильно высчитывает параметры, что приводить к плохому формированию воздушно-топливной смеси
Это нужно учитывать, поэтому при поломке важно не затягивать, и заменить деталь, иначе можно повредить двигатель. Быстрое устранение неполадок относится ко всем дефектам впускного коллектора. Ремонт достаточно сложен, могут возникнуть проблемы при его снятии и замене определенных элементов
Ремонт достаточно сложен, могут возникнуть проблемы при его снятии и замене определенных элементов
Важно проверить все соединения на изоляцию, чтобы не возникало утечек давления. Также стоит следить за клапанами, чтобы они не блокировали поток смеси. Впускной коллектор – важный элемент, который существенно повышает эффективность работы двигателя
Он имеет достаточно сложную конструкцию, но его принцип действия прост. В коллекторе важны все составляющие, а также размер и форма элементов, что обеспечивает эффективность работы устройства
Впускной коллектор – важный элемент, который существенно повышает эффективность работы двигателя. Он имеет достаточно сложную конструкцию, но его принцип действия прост. В коллекторе важны все составляющие, а также размер и форма элементов, что обеспечивает эффективность работы устройства.
А для лучшего понимания конструкции впускного коллектора рекомендуется посмотреть это видео:
Здесь описаны все нюансы производства данного устройства, что позволит увидеть конструкцию и назначение его отдельных элементов, что особенно поможет в ремонте тем, кто ранее не сталкивался с подобными задачами.
https://youtube.com/watch?v=XEo0pb58GnM