Степень сжатия ДВС

А какая компрессия должна быть?

При измерении компрессии у разных марок и моделей двигателей мы получим разные значения у каждого из них. Это нормально, так как у них, как минимум, будет разная степень сжатия.

Эти цифры разрушают одно из опасных предубеждений, давно циркулирующих в водительских кругах, что значение компрессии численно как-то взаимосвязано со степенью сжатия мотора. Как видите – взаимосвязи нет: у одного двигателя со степенью сжатия 7.0 нормальная компрессия от 7.5 до 9.5 бар, а у другого, со СЖ = 11.0, диапазон «здоровой» компрессии от 12.0 до 14.0 бар.

У «молодого», только что сошедшего с конвейера движка компрессия может составлять 8.0 – 10.0 бар, когда он «обкатался» и все его детали приработались друг к другу – 12.0 – 14.0 бар, а когда ресурс подходит к концу и на одометре более 200000 км пробега, компрессометр покажет 7.0 — 9.0 бар с тенденцией к дальнейшему снижению давления, что укажет на близкий к критическому износ цилиндро-поршневой группы, сёдел клапанов и их направляющих. Это – нормальные значения при естественном износе двигателя. Но основной задачей измерения компрессии является выявление «болезней» мотора на ранних стадиях.

Также следует «бить тревогу», если, например: в трёх цилиндрах мотора компрессометр показал 12.3 — 12.6 бар, а в четвёртом – 11.5 бар. Такое «рассогласование» значений сигнализирует о наличии какого-то изъяна.

Задиры на зеркале — частая причина потери компрессии в одном из цилиндров

Если давление в конце такта сжатия одного из цилиндров двигателя явно ниже общего ряда значений, для «уточнения диагноза» и «выписки рецепта» воспользуемся знакомым ещё со времён «Побед» и «ЗиСов», простейшим методом: в «подозрительный» цилиндр через отверстие для свечи вливаем примерно 30-50 мл моторного масла, после чего, снова измеряем компрессию.

Если давление явно увеличилось – сигнал о том, что герметичность поршневых колец нарушена.

Маслосъёмные кольца «залегли»

Если давление не изменилось – велика вероятность трещин в клапанах, прогоревшего поршня, выпавшего клапанного седла, нарушения герметичности прокладки ГБЦ, и т.п.

Трещины в тарелках клапанов

Слишком высокое в одном из цилиндров относительно других давление говорит о повышенном количестве нагара на тарелках клапанов, днище поршня и стенках камеры сгорания. Это может быть следствием изношенных маслосъёмных колпачков и направляющих втулок клапанов, «залегших» поршневых колец и критического износа зеркала цилиндра.

Слой нагара на днище поршня

Более глубокими причинами таких повреждений могут являться слишком большие пробеги между ТО, применение неподходящего или поддельного моторного масла, эксплуатация на низкосортном топливе, несвоевременная замена свечей зажигания, неправильно выставленные зазоры, использование дешёвых или контрафактных элементов системы зажигания и фильтров. Компрессия возрастает по причине того, что скопившиеся отложения уменьшают объём камеры сгорания, из-за чего увеличивается степень сжатия, а значит, и давление в конце такта сжатия.

Для чего бывает нужно изменить коэффициент сжатия

Вычислить степень сжатия ДВС можно, если выполнить расчет по формуле ξ = (Vр Vс)/ Vс; где Vр – рабочий объем цилиндра, Vс – объем камеры сгорания. Из формулы видно, что степень сжатия можно сделать больше, уменьшив, объем камеры сгорания. Или увеличив, рабочий объем цилиндра, не изменяя камеры сгорания.

Рабочий объем цилиндра можно посчитать, зная диаметр цилиндра – D и ход поршня – S. Формула для его вычисления выглядит так: Vр = (π*D2/4)* S.

Чем выше степень сжатия, тем больше компрессия ДВС и его мощность (при прочих равных условиях). Повышая степень сжатия, мы также способствуем увеличению КПД двигателя за счет снижения удельного расхода топлива. Степень сжатия ДВС, определяет октановое число используемого для работы мотора бензина. Так, низкооктановое топливо станет причиной детонации мотора с большим значением этого коэффициента. Чрезмерно высокое октановое число топлива не позволит силовому агрегату, компрессия которого невысока, развивать полную мощность.

Исходные данные

Октановое число топлива, используемого для бензиновых двигателей с различной степенью сжатия.

  • 7,0–7,5 октановое число 72–76.
  • 7,5–8,5 октановое число 76–85.
  • 5,5–7 октановое число 66–72.
  • 10:1 октановое число 92.
  • От 10,5 до 12,5 октановое число 95.
  • От 12 до 14,5 октановое число 98.

Выравнивание плоскости сопряжения головки с блоком срезанием слоя металла приводит к уменьшению камеры сгорания мотора. От этого показатель сжатия увеличивается в среднем на 0,1 при уменьшении толщины головки на 0,25 мм. Имея в своем распоряжении эти данные, можно определить, не превысит ли он после ремонта головки блока допустимые пределы. И не следует ли принять меры для его снижения. Опыт показывает, что при удалении слоя менее 0,3 мм последствия можно не компенсировать.

Необходимость изменения этого параметра ДВС возникает довольно редко. Можно перечислить всего несколько причин, побуждающих сделать такое.

  1. Форсирование двигателя.
  2. Желание приспособить мотор для работы на бензине с другим октановым числом. Было время, когда газовое оборудование для авто не встречалось в продаже. Не было и газа на заправках. Поэтому советские автовладельцы часто переделывали двигатели для работы на более дешевом низкооктановом бензине.
  3. Неудачный ремонт мотора, для ликвидации последствий которого требуется корректировка коэффициента сжатия. К примеру, фрезеровка головки блока после слишком сильной тепловой деформации. Когда выровнять сопрягаемую с блоком цилиндров поверхность удается ценой снятия слоя металла чрезмерно большой толщины. От этого значение коэффициента увеличивается столь сильно, что работа на бензине, для которого был рассчитан мотор, становится невозможной.

Методы увеличения:

  • Расточка цилиндров и установка поршней большего размера.
  • Уменьшение объема камер сгорания. Выполняется за счет удаления слоя металла со стороны плоскости сопряжения головки с блоком. Эту операцию из-за мягкости алюминия лучше делать на фрезерном или на строгальном станке. Шлифовальный станок использовать не следует, так как его камень будет постоянно забиваться пластичным металлом.

Способы снижения:

  • Снятие слоя металла с днища поршня (делается это обычно на токарном станке).
  • Установка между головкой и блоком цилиндров дюралюминиевой проставки между двумя прокладками.

В цилиндры двигателя, имеющего турбонаддув, воздух нагнетается компрессором под давлением несколько больше атмосферного. Значит, для определения показателя сжатия такого мотора нужно значение, которое вы получите в результате расчета по формуле, умножить на коэффициент турбокомпрессора. Бензиновые двигатели с турбонаддувом работают на топливе с октановым числом выше, чем у бензина, который потребляют такие же моторы без турбин, именно потому, что их коэффициент ξ больше.

Изменение степени сжатия

После того как мы определились со степенью сжатия перед нами стоит вопрос как правильно добиться нужной нам степени сжатия. Для начала нужно рассчитать на сколько необходимо увеличить камеру сгорания. Это не сложно. Формула для вычисления степени сжатия имеет следующий вид: e=(VP+VB)/VB Гдеe — степень сжатияVP — рабочий объёмVB — объём камеры сгорания Преобразовав уравнение можно получить формулу для вычисления камеры сгорания при известной степени сжатия.VB=VP1/e ГдеVP1 — объём одного цилиндра По этой формуле вычисляем объём имеющейся камеры сгорания и вычитаем из него объём желаемой (вычисленный по той же формуле), полученная разница и есть интересующее на значение на которое и нужно увеличить камеру сгорания. Существуют разнообразнве способы увеличения камеры сгорания но далеко не все из них верные. Камера сгорания современного автомобиля спроектирована таким образом, что при достижении поршнем ВМТ топливо воздушная смесь вытесняется к центру камеры сгорания. Это пожалуй самая действенная разработка препятствующая детонации. Самостоятельная доработка камеры в ГБЦ под силу далеко не многим. Это обусловлено тем, что вопервых вы можите нарушить спроектированную форму камеры, так же при доработке могут «вскрыться» стенки т.к. не известна их толщина. Так же не рекомендуется «расжимать мотор» толстыми прокладками т.к. Это нарушит процессы вытеснения в камере сгорания. Наиболее простым и правельным способом считается установка новых поршней в которых задан необходимый объём камеры. Для турбо-двигателя сферическая форма считается наиболее эффективной. Лучше использовать для этих целей специально разработанные и изготовленные поршни. Возможен вариант самостоятельной доработки стоковых поршней. Но сдесь нужно учесть что толщина дна поршня не должна быть меньше 6% от диаметра.

Изменение коэффициента сжатия

Зачем менять степень?

На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:

  • при желании форсировать двигатель;
  • если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
  • после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.

Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).

Перевод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.

Опасность эффекта детонации на автомобиле и причины его возникновения

Детонационные нагрузки опасны для любого двигателя внутреннего сгорания, и именно поэтому все производители современных автомобилей оснащают агрегаты специальными датчиками. Такие устройства не исключают вероятность возникновения процесса, но предупреждают о его возникновении, что позволяет контроллеру оперативно прибегнуть к устранению проблемы.

Чтобы оценить всю опасность такого процесса, который называется детонацией ДВС, следует взглянуть на фото ниже.

На них изображены детали двигателя, которые были извлечены в ходе проведения ремонтных работ. Столь сильному разрушению поршень и клапан подверглись именно по причине возникновения самопроизвольного воспламенения топлива в камерах сгорания. Поршень и клапан — это не единственные детали, которые подвергаются ускоренному износу при детонации. От этого явления испытывают сильные нагрузки и другие детали, как коленчатый вал и кривошипно-шатунный механизм.

Причинами возникновения детонационных нагрузок двигателя являются следующие факторы:

Несоответствие топлива по октановому числу. Если производитель рекомендует заливать бензин марки А-95, то использовать низкооктановое топливо категорически противопоказано. Детонация, возникающая по причине несоответствия топлива, способствует формированию нагара, провоцирующего развитие калильного зажигания. В итоге после выключения зажигания, продолжает функционировать двигатель, что проявляется по причине воспламенения ТВС от раскаленных электродов свечи зажигания.
Условия эксплуатации и характер вождения. Очень часто детонация двигателя возникает у неопытных водителей, когда переход на повышенную передачу происходит на слишком низкой скорости движения автомобиля и при недостаточном количестве оборотов коленчатого вала

Важно переключаться на следующую передачу, когда обороты двигателя на тахометре составляют от 2,5-3 тысяч об/мин. Если перейти на повышенную передачу, не разогнав предварительно автомобиль, то не исключено возникновения характерного металлического стука в области подкапотного пространства

Этот стук и является детонацией двигателя. Такая детонация называется допустимой, и при ее возникновении, она продолжается недолго.
Конструктивные особенности двигателя — развитию негативного явления особенно подвержены автомобили, которые оснащены турбонаддувом. Часто проявляется данный эффект, если автомобиль заправляется низкооктановым топливом. Сюда также относятся такие факторы, как форма камеры сгорания и тюннинг (форсирование) ДВС.
Неправильная установка угла опережения зажигания УОЗ. Однако такое явление чаще встречается на карбюраторных двигателях, а на инжекторе оно может возникнуть, в том числе, и по причине неисправности датчика детонации. Если зажигание будет слишком ранним, то топливо будет воспламеняться намного раньше, чем пока поршень достигнет верхней мертвой точки.
Высокая степень сжатия в цилиндрах — зачастую возникает при сильной закоксованности цилиндров двигателя. Чем больше нагара на стенках цилиндров, тем выше вероятность развития детонационных нагрузок.
Обедненная ТВС. Если в камеру сгорания подается смесь с низким количеством топлива, то высокая температура электродов свечи зажигания способствует провоцированию детонации. Малое количество бензина и большое объем воздуха приводит к развитию окислительных реакций, которые реагируют на повышенную температуру. Такая причина характерна для инжекторных двигателей, и проявляется обычно только на прогретом двигателе (как правило, при оборотах коленвала от 2 до 3 тысяч).

Это интересно! Очень часто причиной развития самовоспламенения ТВС в цилиндрах связано с изменением прошивки ЭБУ. Обычно это делается с целью уменьшения расхода топлива, однако от такой прихоти автовладельца страдает двигатель. Ведь одной из причин развития детонационной нагрузки является обедненная смесь.

Если из строя выходит датчик детонации, то это не станет причиной возникновения детонационных процессов. Если ЭБУ не будет получать соответствующую информацию от ДД, то он перейдет в аварийный режим работы, когда корректировка угла опережения зажигания будет происходить с отклонением в сторону позднего зажигания. Это в свою очередь повлечет за собой множество негативных последствий: увеличение расхода топлива, снижение динамики, мощности и нестабильность работы ДВС.

Что такое степень сжатия двигателя

Условно величину сжатия представляют и как соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно эта степень обусловлена конструкцией автомобильного двигателя, и может быть высокой или низкой.

Перед непосредственным процессом воспламенения горючей смеси, поршни сжимают топливо до определённого объёма. Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии проектирования. Узнав количественное соотношение данной величины к объёму камеры сгорания, можно делать различные выводы.

На бензиновых силовых установках показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия двигателя или ССД, тем больше удельная мощность мотора. Однако при сильном увеличении данного показателя снижается ресурс агрегата, особенно при заправке низкосортным бензином. На дизельных моторах, ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.

Модернизация распредвала

В большинстве случаев использование распределительных валов с изменённой геометрией кулачков практикуется для повышения мощности двигателя, хотя существуют и прямо противоположные решения.

Всё зависит от того, увеличены или уменьшены размеры кулачков. В первом случае обеспечивается больший ход клапанов, что положительно сказывается на динамике силового агрегата. Однако и здесь имеются свои нюансы: в продаже имеются модернизированные распредвалы, предназначенные для увеличения мощности мотора на низких, средних или высоких оборотах вращения коленвала. Зависит это опять же от того, как сильно увеличена высота подъёма клапанов. Если незначительно – имеем добавку мощности на небольших оборотах, если максимально (но так, чтобы исключить соударение клапана с поршнем) – увеличим тягу мотора на высоких оборотах.

Так что если вы хотите увеличить мощность атмосферного двигателя, минимально изменяя конструкцию силового агрегата – установка спортивного распредвала поможет вам решить эту задачу. Разумеется, после замены этой детали потребуется выполнение процедуры регулировки клапанов.

Способы проверки компрессии, причины низкой компрессии. Ремонт мотора или его замена?

Компрессией называют величину максимального давления в цилиндре, создаваемого при холостой прокрутке двигателя стартером (например, при отключении свечи зажигания). Компрессию двигателя не стоит путать со степенью сжатия, т.к. это разные понятия.

Компрессия – силовое воздействие на газообразное тело, приводящее к уменьшению занимаемого им объема, а также к повышению давления и температуры. В широком смысле слова компрессия — это величина давления, которое создаётся в цилиндре в конце такта сжатия.

При диагностике неисправностей связанных с перебоями в работе двигателя первым делом необходимо замерить компрессию. Это даст правильное направление для дальнейшего поиска неисправности. Можно сколько угодно улучшать зажигание и подачу топлива, но если цилиндр не достаточно герметичен, то нормально работать он не будет. Своевременный замер компрессии может выявить на ранних стадиях разгерметизацию цилиндров, таким образом сэкономить деньги на ремонте и время в поиске неисправности.

Особенно требовательны к компрессии дизельные двигатели, так как в них воспламенение топлива происходит без использования свечи зажигания. В таком двигателе в разогретый от сжатия в цилиндре воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. Как следствие если нет достойной компрессии, то и не будет условий для воспламенения дизельного топлива.

В процессе впрыскивания топливной смеси происходит его распыливание, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела.

Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего процесса, благотворно сказывается на КПД данного типа двигателей, который может превышать 50%.

Как правильно замерить компрессию

Чтобы измерить компрессию, необходимо вместо свечи (зажигания или накала) установить компрессометр. Этот прибор представляет собой манометр, соединенный шлангом со штуцером и обратным клапаном. При вращении коленчатого вала двигателя в шланг нагнетается воздух до тех пор, пока давление в шланге не сравняется с максимальным давлением в цилиндре. Его значение зафиксирует манометр.

При измерениях компрессии надо соблюдать важные правила. Во-первых, двигатель должен быть «теплым». Подача топлива должна быть отключена. Можно, например, отключить бензонасос, форсунки или использовать другие способы, препятствующие попаданию большого количества топлива в цилиндры. Во-вторых, необходимо вывернуть все свечи. Выборочный демонтаж свечей, практикуемый на некоторых СТО, недопустим, так как увеличивает сопротивление вращению и произвольно снижает обороты при прокрутке двигателя стартером. В-третьих, аккумуляторная батарея должна быть полностью заряжена, а стартер – исправен.

Компрессию измеряют как с открытой, так и с закрытой дроссельной заслонкой. При этом каждый из способов дает свои результаты и позволяет определять свои дефекты. Так, когда заслонка закрыта, в цилиндры, очевидно, поступит мало воздуха, поэтому компрессия будет низкой и составит около 0,6-0,8 МПа. Утечки воздуха в этом случае сравнимы с его поступлением в цилиндр. Вследствие этого компрессия становится особо чувствительной к утечкам – даже при малых неплотностях ее значение падает в несколько раз.

При измерении компрессии с открытой заслонкой картина будет иной. Большое количество поступившего воздуха и рост давления в цилиндре, конечно, способствуют увеличению утечек. Однако они заведомо меньше подачи воздуха. Вследствие этого компрессия падает не столь значительно (приблизительно до 0,8-0,9). Поэтому замер компрессии с открытой заслонкой лучше подходит для определения более «грубых» дефектов двигателя, таких как: поломки поршней, закоксовывание колец, прогары клапанов, задиры поверхности цилиндров.

В обоих способах измерения желательно учитывать динамику нарастания давления – это поможет установить истинный характер неисправности с большей вероятностью. Так, если на первом такте величина давления, измеряемая компрессометром, низкая (0,3-0,4), а при последующих тактах резко возрастает, — это косвенно свидетельствует об износе поршневых колец. В таком случае заливка в цилиндр небольшого количества масла сразу увеличит не только давление на первом такте, но и компрессию.

Результаты моделирования рабочего цикла поршневых ДВС

На показаны зависимости Ne и ge от частоты вращения коленчатого вала n после перевода базового двигателя на газомоторное топливо (пропан и метан) с сохранением всех основных параметров ДВС (степени сжатия, фаз газораспределения, угла опережения зажигания и т.д.). Как и следовало ожидать, перевод бензинового двигателя на газ сопровождается уменьшением мощности во всём диапазоне частот вращения коленвала: в случае работы ДВС на пропане снижение Ne не превышает 5%, а при использовании метана достигает 12%. При этом наблюдается улучшение топливной экономичности газопоршневых двигателей внутреннего сгорания. Выигрыш в расходе топлива (по сравнению с базовым двигателем) составляет в среднем 4% и 13%, соответственно, при использовании в качестве топлива пропана и метана. Таким образом, положительный эффект от перевода бензинового двигателя на газомоторное топливо заключается в снижении расхода топлива, но при одновременной потере мощности. Известно, что повышение степени сжатия в поршневых ДВС имеет ряд преимуществ, в частности, уменьшение gе и рост Ne, что связано с увеличением термического КПД и улучшением условий для смесеобразования и сгорания топлива . Поэтому было исследовано влияние величины степени сжатия поршневых двигателей, переведённых на газомоторное топливо, на их технико-экономические показатели (). Установлено, что наиболее заметный рост мощности двигателя наблюдается при увеличении степени сжатия ε до 15, после чего рост Ne становится малозаметным; при этом зависимость ge = f(ε) имеет экстремум при рассматриваемой величине ε. Следовательно, можно предположить, что оптимальные значения степени сжатия для газопоршневых двигателей размерности 9,2/8,8 находятся в районе 14–16. Таким образом, было произведено сравнение технико-экономических показателей базового бензинового ДВС (с ε = 7,6) и газопоршневых двигателей, работающих на пропане и метане, с ε = 15 ().

Рис. 3. Зависимость удельного эффективного расхода топлива от частоты вращения колен-
вала поршневого двигателя

На основе численного моделирования установлено, что двигатель, работающий на метане, при ε = 15 имеет мощность, фактически равную базовому бензиновому двигателю (отклонения Ne находятся в пределах ± 5%), при снижении расхода топлива на 20–30%, в зависимости от режима работы ДВС. В свою очередь, при ε = 15 у двигателя, работающего на пропане, наблюдается рост мощности по сравнению с базовым двигателем в диапазоне 5–15% при одновременном уменьшении ge на 10–20%. Для более корректного сравнения технико-экономических показателей поршневых ДВС, работающих на разных видах топлива, дополнительно было выполнено численное моделирование для бензинового двигателя, имеющего ε = 11 (что вполне допустимо при работе на бензинах с октановым числом 95–98) и газопоршневых двигателей, работающих на пропане и метане с ε = 15 (). Установлено, что бензиновый двигатель с ε = 11 и газопоршневой ДВС, работающий на пропане, с ε = 15 имеют практически одинаковую эффективную мощность (отличия составляют ± 2%) во всём диапазоне частот вращения коленчатого вала; при этом газопоршневой двигатель имеет меньший расход топлива ge на 4–10%. В свою очередь, бензиновый ДВС с ε = 11 имеет большие значения Ne по сравнению с двигателем, работающем на метане, на величину от 4 до 10%. Однако даже в этом случае газопоршневой двигатель на метане имеет существенно лучшую экономичность (снижение ge вплоть до 20%).

Положительный эффект от перевода бензинового двигателя на газомоторное топливо заключается в снижении расхода топлива, но при одновременной потере мощности. Известно, что повышение степени сжатия в поршневых ДВС имеет ряд преимуществ, в частности, уменьшение gе и рост Nе, что связано с увеличением термического КПД и улучшением условий для смесеобразования и сгорания топлива

Рис. 4. Зависимость удельного эффективного расхода топлива от частоты вращения коленвала поршневого двигателя

На что это влияет

Топливо сгорает по всему объему цилиндра. Показатель сжимания рабочей смеси не зависит от компрессии. А вот последняя связана с ним, а еще с целым рядом факторов: температурой, давлением в исходной точке движения поршня, регулировкой газораспределительных фаз. Итак, чтобы подытожить, можно сказать, что компрессией является то максимальное давление, которое будет измерено в цилиндре при неработающем двигателе и полностью перекрытой подаче топлива.

Главное влияние, которое оказывают эти параметры на работу мотора, это его пусковые качества, особенно при низких зимних температурах. Наиболее чувствительны дизеля — от температуры сжатия и давления будет зависеть тот факт, запустится движок либо нет. Однако восприимчивы и бензиновые ДВС. В остывшем состоянии они чувствительны к показателю компрессии. Если он ниже нормы, то увеличивается давление картерных газов, что приводит к попаданию масляных паров во впускную систему.

Это повышает загрязненность камер сгорания вместе с содержанием токсичных частиц в отработанных газах. Мы часто можем понять, что топливо сжимается в цилиндрах не так, как ему следовало бы по вибрации мотора, в особенности на малых оборотах и при работе «на холостых». Это небезопасный момент, как для подвески агрегата, так и для отдельных узлов трансмиссии.

Есть ли связь между степенью сжимания и мощностными качествами автомобиля? Другими словами, можно ли, улучшив один параметр, добиться увеличения другого, что бывает настолько востребовано в кругу автолюбителей. Увеличив степень сжатия, мы повышаем в цилиндре давление. Благодаря этому изменяется и детонация, а датчик автоматически отодвигает назад угол зажигания. Это приводит к падению мощностных показателей. Одновременно вырастают выпускные температур, которые грозят сжечь поршни и клапана.

Расчет коэффициента сжатия

Вычислить степень сжатия ДВС можно, если выполнить расчет по формуле ξ = (Vр + Vс)/ Vс; где Vр – рабочий объем цилиндра, Vс – объем камеры сгорания. Из формулы видно, что степень сжатия можно сделать больше, уменьшив, объем камеры сгорания. Или увеличив, рабочий объем цилиндра, не изменяя камеры сгорания. Vр намного больше чем Vс. Поэтому можно считать, что ξ прямо пропорционален рабочему объему и находится в обратной зависимости от объема камеры сгорания.

Рабочий объем цилиндра можно посчитать, зная диаметр цилиндра – D и ход поршня – S. Формула для его вычисления выглядит так: Vр = (π*D2/4)* S.

Калькулятор расчета рабочего объёма двигателя внутреннего сгорания

Рабочий объем цилиндра представляет собой объем находящийся между крайними позициями движения поршня.Формула расчета цилиндра известна еще со школьной программы – объем равен произведению площади основания на высоту.

И для того чтобы вычислить объем двигателя автомобиля либо мотоцикла также нужно воспользоваться этими множителями. Рабочий объём любого цилиндра двигателя рассчитывается так: где, h — длина хода поршня мм в цилиндре от ВМТ до НМТ (Верхняя и Нижняя мёртвая точки)r — радиус поршня ммп — 3,14 не именное число.Для расчета рабочего объема двигателя вам будет нужно посчитать объем одного цилиндра и затем умножить на их количество у ДВС.

И того получается: Vдвиг = число Пи умножено на квадрат радиуса (диаметр поршня) умноженное на высоту хода и умноженное на кол-во цилиндров.Поскольку, как правило, параметры поршня везде указываются в миллиметрах, а объем двигателя измеряется в см.

Чтобы посчитать объем интересующего вас двигателя нужно внести 3 цифры в соответствующие поля, — результат появится автоматически. Все три значения можно посмотреть в паспортных данных автомобиля или тех.

характеристиках конкретной детали либо же определить, какой объем поршневой поможет штангенциркуль.Таким образом, если к примеру у вас получилось что объем равен 1598 см³, то в литрах он будет обозначен как 1,6 л, а если вышло число 2429 см³, то 2,4 литра.

Длинноходный и короткоходный поршеньТакже замете, что при одинаковом количестве цилиндров и рабочем объеме двигатели могут иметь разный диаметр цилиндров, ход поршней и мощность таких моторов так же будет разной. Движок с короткоходными поршнями очень прожорлив и имеет малый КПД, но достигает большой мощности на высоких оборотах.

А длинноходные стоят там, где нужна тяга и экономичность.Следовательно, на вопрос «как узнать объем двигателя по лошадиным силам» можно дать твердый ответ – никак. Ведь лошадиные силы хоть и имеют связь с объемом двигателя, но вычислить его по ним не получится, поскольку формула их взаимоотношения еще включает много разных показателей. Так что определить кубические сантиметры двигателя можно исключительно по параметрам поршневой.

Чаще всего узнают объем двигателя когда хотят увеличить степень сжатия, то есть если хотят расточить цилиндры с целью тюнинга. Поскольку чем больше степень сжатия, тем больше будет давление на поршень при сгорании смеси, а следовательно, двигатель будет более мощным.

Zhurikhin › Блог › Расчет Динамической степени сжатия (DCR)

Для простоты, сравним всем известные двигатели семейства ВАЗ и проследим их эволюцию в разрезе введенного нами параметра.Итак, первый двигатель, который мы рассмотрим — это ВАЗ 2106, основные параметры, такие как диаметр цилиндра, ход поршня и остальные можно легко найти в интернете, я уже произвел все необходимые расчеты, и для простоты, буду указывать уже сокращенные данные. Этот двигатель имеет геометрическую степень сжатия – 8,5 и угол закрытия ВК равным 55°, на основе всех данных, значение DCR для этого двигателя будет равно 7,5. Сравним со значением из таблицы, получаем, что для данного типа двигателя допустимо применение 92 бензина, причем с небольшим запасом.

В принципе, для того времени, когда разрабатывался этот двигатель октановое число топливо применялось со значение 91, а системы управления двигателем не позволяли достаточно точно производить настройку, поэтому некий запас конечно был необходим.Теперь рассмотри другой двигатель из этого семейства – ВАЗ 21213.

Что такое степень сжатия двигателя

Есть распространенное заблуждение, что степень сжатия — едва ли не самый главный параметр любого автомобильного двигателя. На самом деле, это не совсем так. Степень сжатия двигателя влияет на топливо, которое лучше использовать для мотора. Также от степени сжатия зависят параметры воспламенения. Если на автомобиле используется искровое зажигание (бензиновый двигатель), степень сжатия специалисты стремятся повысить, а если сгорание в цилиндрах происходит от сжатия (дизельный двигатель), то, наоборот, снизить.

Рассмотрим пример. Допустим, у нас бензиновый двигатель с объемом в 2,4 литра. Если в таком моторе степень сжатия равна 6 единицам, то мощность такого двигателя составит около 100 лошадиных сил. При этом, если оставить тот же мотор, но повысить степень сжатия в дважды — до 12 единиц, то мощность составит около 135-140 лошадиных сил. При этом в обоих рассмотренных случаях расход бензина будет одинаковый. Если сжатие выше, то ниже температура выхлопных газов, соответственно, больше высвободившейся энергии может быть преобразовано в механическую работу.

Если углубиться в физику процесса, можно вспомнить, что чем выше уровень расширения газов после произошедшего воспламенения, тем ниже температура этих газов. Соответственно, больше механической энергии в результате взрыва высвобождается. Поскольку в автомобильных двигателях степень сжатия и степень расширения газов в процессе взрыва практически идентичны (поскольку взрыв происходит в замкнутом цилиндре), отсюда следует, что с повышением степени сжатия удается повысить эффективность работы двигателя.

Само собой, повышать степень сжатия можно не до бесконечности — есть определенная граница. В зависимости от того, насколько высока температура и давление смеси в момент создания искры, определяется риск возникновения детонации. Если не просчитывать данный фактор, могут создаться серьезные проблемы в работе двигателя.

Обратите внимание: Чтобы нивелировать проблему с возникновением детонации в ходе повышения температуры, производители автомобилей ввели в двигателях пятый цикл. Смысл его в том, что закрытие впускных клапанов происходит позже, чем ранее

Соответственно, это позволяет лучше использовать топливо в цилиндрах, что снижает степень сжатия, но увеличивает уровень расширения. Такая схема используется на современных автомобильных моторах.

Если ознакомиться с технической информацией по автомобилю, можно заметить, что степень сжатия фигурирует в документации в качестве одного из параметров. Данная степень сжатия является постоянной для двигателя, и изменить заложенные производителем значения практически невозможно.

Степень сжатия можно измерить самостоятельно. Чтобы это сделать, необходимо поделить общий объём двигателя на число цилиндров. В результате данных вычислений удастся узнать полный объем одного цилиндра. Далее потребуется один из поршней мотора перевести в верхнюю мертвую точку и залить в данный цилиндр масло, отмерив его объем. Полученный объем — это объем камеры сгорания. Далее остается разделить общий объём цилиндра на объем камеры сгорания и узнать степень сжатия двигателя.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий