Турбонаддув в теории и на практике

Принцип работы двигателя с турбонаддувом

Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.

Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.

Минусы двигателя с турбонаддувомО плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.

Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.

Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотным и содержит больше молекул, чем теплый воздух.   Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.

Применение турбоустановок на Мерседес

Самыми популярными турбинами на мерседес являются: компрессорные установки. Однако при повышенных нагрузках во время эксплуатации наблюдается частый выход из строя подшипников на роторе, а также муфты. Ремонт турбины Мерседес в настоящее время стал возможным благодаря использованию высокоточного технологичного оборудования.

Турбокомпрессор — устройство, которое позволяет примерно на 30% увеличить мощность мотора, при этом отсутствует необходимость физически увеличивать объём цилиндров. Такие агрегаты установлены практически на всех современных автомобилях, вне зависимости от типа используемого топлива. Ниже подробнее расскажем об устройстве и работе турбины дизельного двигателя, а также обрисуем минусы этого устройства и самые распространённые поломки.

Преимущества “дизелей”

В этом видео, вам расскажут, какие отличия и преимущества дизельных двигателей от бензиновых.

Моторы, совершающие полезную работу за счет сгорания дизельного топлива, имеют несколько преимуществ перед бензиновыми устройствами:

  1. Пониженный на треть расход топлива.
  2. Отсутствие системы зажигания.
  3. Увеличенный в полтора раза моторесурс.
  4. Стабильность регулировочных параметров.
  5. Средний КПД – 40 %, у двигателей с турбонаддувом – выше 50 %.
  6. Высокий крутящий момент.
  7. Низкая насыщенность выхлопных газов двуокисью углерода (экологии наносится меньше вреда).
  8. Пожаробезопасность за счет того, что дизельное топливо не может самовозгораться.

Среди минусов “дизеля” примечательно затруднение холодного пуска. Мотор является источником сильной вибрации и громкого шума. Однако современные модели лишены этих недостатков.

Назначение турбины и ресурс

Работа турбонагнетателя направлена на увеличение потока подаваемого воздуха в камеру сгорания. Это приводит к более полному и быстрому сгоранию топлива, в результате чего на нужных режимах двигатель дает большую отдачу. Конструкторам не приходится увеличивать рабочий объем двигателя, проводит сложную техническую модернизацию. Используют турбонаддув как на дизельных моторах, так и с бензиновыми агрегатами. Большую эффективность при этом демонстрируют как раз дизеля. Это связано с высокой степенью сжатия у агрегата на дизельном топливе и меньшим числом оборотов при работе. В последнее время перспективным называют газотурбинный двигатель, который уже разработан для тракторов, грузовых авто.

С учетом высоких затрат на ремонт, владельцы стремятся как можно дольше сохранить работоспособность турбокомпрессора. Увеличение ресурса напрямую связано с пониманием особенностей работы турбинного нагнетателя. Крыльчатка начинает работу с первых секунд пуска мотора, а останавливается несколькими секундами позже остановки коленчатого вала. При малых оборотах двигателя давление выхлопных газов не позволяет раскручивать турбину. Включение происходит с ростом оборотов, и у движка словно открывается второе дыхание.

Изначально ресурс нагнетателя не уступает аналогичным показателям самого мотора. Преждевременный выход из строя турбины связан с высокими температурными нагрузками, высокой скоростью вращения.

Недостатки турбированных двигателей

Одним из важных недостатков турбин является их дороговизна обслуживания. Турбины очень чувствительны к качеству масла и дизелю либо бензину. Для увеличения срока эксплуатации необходимо использовать только качественные синтетические масла и топливо, соответствующей марки без посторонних примесей. Помимо износа самой турбины из-за повышенных нагрузок страдает и мотор, что приводит к уменьшению срока его эксплуатации. Ещё одним недостатком турбонаддува выступает сложность ремонта.

Без привлечения опытных специалистов и профессионального оборудования выполнить ремонтные работы практически невозможно.

Какой принцип работы турбины на дизельном двигателе

В состав турбокомпрессора, устанавливаемого на дизельные силовые агрегаты, входят:

  1. Компрессорный корпус.
  2. Роторный или осевой вал.
  3. Турбинный корпус.
  4. Колеса компрессора и турбины.
  5. Корпус для подшипников.

Основой турбины является крыльчатка, закрепленная на оси. Она имеет корпус из специальных, термоустойчивых материалов. Это необходимо, поскольку турбина, и все ее элементы постоянно контактируют с огромным потоком различных газов, температура которых, зачастую, очень высока.

Данный транспортный канал, по которому проходят газы, расположен в корпусе турбонагнетателя. После этой части пути, происходит разгон отработавших газов, затем осуществляется подача их под давлением в полость ротора. Так осуществляются вращательные движения элементов автомобильной турбины.

Однако конструктивные особенности турбин на дизельных двигателях могут отличаться. Самым распространенным отличием в них является различное число каналов, расположенных в корпусе турбины, по которым осуществляется движение вредных газов.

Также существует тип турбины, геометрия которой изменяется. Они дают возможность управления потоками газов непосредственно в пределах корпуса турбины.

Принцип работы

Для начала нужно разобраться с двумя терминами.

Турбоподхват — состояние, при котором быстро вращающийся ротор увеличивает подачу воздуха в цилиндры, благодаря чему повышается мощность силового агрегата.

Турбояма — короткая задержка, которая возникает в работе турбины при повышении количества поступившего топлива во время нажатия педали газа. Задержка появляется из-за того, что ротору необходимо некоторое время, пока газы его не разгонят.

Турбонаддув повышает давление выхлопных газов за счёт более интенсивной работы мотора, но в то же время увеличивается и давление наддува. При достижении критических величин может произойти поломка, а потому этот процесс необходимо контролировать. За регулировку давления отвечают клапана, а мембрана и пружина следят за предельно допустимыми значениями. При достижении определённой величины мембрана открывает клапан для стравливания давления.

Работа турбины на дизельном двигателе нуждается в контроле давления, который осуществляется следующими процессами:

  • если поступило слишком много воздуха, компрессор (используя клапан) освобождается от излишков;
  • клапан стравливает давление в случаях, когда воздуха поступило слишком много — при этом агрегат работает стабильно и забирает ровно столько воздуха, сколько требуется.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Принцип работы турбины на дизельном двигателе

В свое время силовые двигатели, усиленные турбиной, встречались только на грузовых машинах, да и то не на всех. Несколько позже стали турбировать и легковые автомобили, предназначенные для гонок. В наше время моторы, оснащенные турбинами, отлично ведут себя на обычном легковом транспорте. Линейный ряд этих двигателей развивается так быстро, что простым моторам внутреннего сгорания уже ничего не осталось, чтобы уступить первенство усовершенствованным аналогам.

  1. Принципиальная схема
  2. Турбина с изменяемой геометрией
  3. Устройство с интеркулером
  4. Как определяется неисправность
  5. Порядок проверки

Принципиальная схема

Чтобы понимать, как работает турбина, следует ознакомиться с порядком функционирования ДВС.

Как правило, большинство моторов четырехтактные поршневые, их работа всегда под контролем клапанов впускной и выпускной групп. Один цикл работы составляет четыре такта, которые проходят за два полных оборота коленчатого вала.Принцип работы турбины на дизельном двигателе довольно прост и состоит из следующих действий:

  • впуск – поршень идет вниз, давая возможность проникать воздуху через впускной клапан;
  • компрессия – в этот момент горючая смесь сжимается;
  • процесс расширения – горючее входит под давлением и загорается;
  • выпуск – поршень идет вверх, выпуская газ.

Турбина с изменяемой геометрией

Работа турбонаддува может сопровождаться некоторыми сложностями:происходит задержка усиления мощности («турбояма») в момент резкого давления на газ;выход из такого состояния меняется резким повышением воздействия наддува («турбоподхват»).Возникновение первого явления возможно из-за инерционности системы. Чтобы решить такую проблему, применяют:

  • турбинное устройство с изменяемой геометрией;
  • используют пару параллельных либо последовательных компрессорных устройств;
  • наддув комбинированного вида.

Турбина с изменяемой геометрией:1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Устройство с интеркулером

При сжатии воздух изменяет не только плотность, но и температурный режим. Для сгорания топлива поступающий кислород довольно полезен, но выпускаемый горячий воздух оказывает разрушительное действие на всю систему. По этой причине используют интеркулер, своего рода радиатор, с помощью которого понижается температура. За счёт этого мощность двигателя увеличивается на 15-20 лошадиных сил.Смысл работы устройства заключается в том, что горячие воздушные массы подвергаются охлаждению. Может быть воздушным и жидкостным.

Как определяется неисправность

Причины отказа работы турбины бывают разные, но к основным признакам этого можно отнести:значительно понижается динамика, автомобиль «не тянет»;

  1. двигатель долго не выходит на нужную мощность;
  2. из трубы для выхлопных газов появился дымок голубого либо сизого оттенка;
  3. ощущается запах сгоревшего масла;
  4. мотор при работе «кушает» масло;
  5. под капотной крышкой появляются странные звуки;
  6. на холостом ходу движок работает нестабильно.

Порядок проверки

Если нет возможности проверить турбинное устройство в автосервисе, то это можно сделать самостоятельно, не покидая гаража.Для начала проводится визуальный осмотр устройства. Изучается цвет дыма. Беловатые выхлопы говорят о том, что воздуховоды забиты, либо сливной масляный провод засорен. Если дым напоминает копоть, то подтверждает утечку масла. Сизость дымка говорит о том, что течет масло. После попадания в камеру, оно придает дыму сизоватость. Чтобы убедиться в своей правоте, необходимо снять фильтр очистки воздуха. Если он чист – причину искать следует в другом.

Теперь двигатель следует прогреть и приступить к очередному проверочному этапу, и пригласить на помощь напарника. Ищем патрубок, идущий от турбины к впускному коллектору. Пережав патрубок, даем команду давить на газ несколько секунд. По второй команде педаль резко отпускается. Рука, лежащая на патрубке, будет ощущать, как он расширяется. Это свидетельствует о том, что воздушное давление велико. Если такого не происходит – турбина вышла из строя.Проще всего, если есть датчик давления турбины. По его работе быстро определяется пригодность турбинного устройства.Необходимо помнить, что турбина считается довольно чувствительной частью мотора, и способна утратить работоспособность по малейшим причинам. Но продлить ее срок эксплуатации возможно, организовав за двигателем минимальный уход.

Принцип работы автомобильной турбины

Как уже писалось выше, принцип действия турбонаддува в автомобиле основывается на использовании энергии, выделяемой отработавшими газами двигателя. Газы вращают колесо турбины, которое, в свою очередь, через вал передает крутящий момент колесу компрессора.

Видео — принцип работы двигателя с турбонаддувом:

Тот, в свою очередь, сжимает воздух и осуществляет его нагнетение в систему. Охлаждаясь в интеркулере, сжатый воздух попадает в цилиндры двигателя и обогащает смесь кислородом, обеспечивая эффективную «отдачу» мотора.

Собственно, именно в принципе действия турбины в автомобиле кроются ее достоинства и недостатки, устранить которые инженерам весьма непросто.

Как увеличить подачу воздуха в двигатель: доступные способы

Как видно, от количества и качества поступающего в цилиндры воздуха напрямую будет зависеть и мощность силового агрегата. В целях получения улучшенной отдачи от ДВС многие автолюбители стремятся увеличить подачу воздуха в агрегат. Как правило, такая необходимость возникает в процессе тюнинга двигателя, после проведения каких-либо доработок и т.д.

Далее мы рассмотрим несколько возможных способов, которые при этом не предполагают кардинальных переделок (например, доработка каналов ГБЦ, замена турбины на более производительную и т.п.)

Самым простым и бюджетным решением является установка фильтра нулевого сопротивления (нулевика). Хотя общий прирост мощности от такого решения небольшой, но на спортивных и специально подготовленных авто установка нулевика в комплексе с другими усовершенствованиями волне оправдана.

Однако этого не скажешь о гражданских авто со «стоковым» ДВС. В этом случае получается скорее вред, чем польза, так как фильтры нулевого сопротивления быстрее загрязняются и хуже очищают воздух, что может сказаться на ресурсе мотора. При этом никакого прироста мощности фактически не наблюдается.

Еще одним способом подать в мотор больше воздуха является доработка элементов заводской системы. Речь идет о воздухозаборнике, патрубках, верхней крышке корпуса воздушного фильтра.

В самом начале необходимо измерить сопротивление воздуха на входе и после выхода из корпуса фильтра, после чего проводятся работы в целях уменьшения такого сопротивления.

Также следует отметить, что иногда на профильных форумах встречается информация об электрическом вентиляторе во впуск (динамический вентилятор, завихритель воздуха, система динамического наддува, электрический турбонагнетатель и т.п.). В свое время на рынке выделялись производители Кamann, Simota и ряд других.

Если коротко, так называемая электротурбина на впуске позволяет добиться подачи охлажденного воздуха во впускной коллектор без каких-либо существенных доработок, что особенно актуально для атмомоторов. В результате в двигатель начинает поступать охлажденный, а не теплый воздух, увеличивается объем воздуха и т.д.

Устройство представляет собой патрубок, в котором устанавливается крыльчатка. Во время работы крыльчатка вращается, создавая спиралеподобные завихрения воздуха. По заверениям производителей такой воздух более холодный и лучше проникает в камеры сгорания.

В результате улучшается общий процесс смесеобразования, мощность двигателя растет, повышается эластичность во время работы ДВС на разных режимах, автомобиль демонстрирует улучшенные динамические характеристики.

Однако как показывает практика, особой пользы после установки таких решений нет. Более того, высокая стоимость на отметке около 300-400 у.е. и вовсе ставит целесообразность подобных экспериментов под большое сомнение.

Еще в списке возможных решений для увеличения подачи воздуха можно отметить так называемый «холодный впуск». Подобное решение фактически предполагает вынос воздухозаборника из подкапотного пространства наружу, что позволяет снизить температуру поступающего воздуха и повысить его плотность.

В продаже встречаются готовые комплекты как для определенных моделей авто, так и универсальные. К преимуществам холодного впуска можно отнести увеличение мощности двигателя, снижение риска возникновения детонации, улучшение реакций на нажатие педали газа, незначительное уменьшение расхода топлива.

При этом существенно повышается вероятность попадания воды во впуск и гидроудара, а также намного быстрее загрязняется воздушный фильтр. Дело в том, что воздухозаборник ставится в «окна», которые отдельно делаются в бампере, в передней фаре и т.д.

Турбонаддув – назначение, устройство и принцип работы

Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала. Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.

Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.

Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.

Устройство

Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.

Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.

Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.

Его устройство выглядит следующим образом:

Устройство турбонагнетателя: 1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.

Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.

Как работает турбонаддув

Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.

Принцип работы турбонаддува

Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.

Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий