Самодельное устройство для зарядки автомобильного АКБ

Введение: современные зарядные устройства

Хорошее зарядное устройство является неотъемлемой составляющей частью хорошей аккумуляторной системы. Реалии рынка таковы, что он довольно сильно наполнен различными зарядными устройствами, в большинстве своем – невысокой ценовой категории. Но идеальной ситуацией является максимальное “родство” аккумуляторной батареи и зарядного устройства, они должны работать в паре словно тяговая лошадь и повозка. При разработке и конструировании новых моделей аккумуляторов зарядное устройство к ним должно разрабатываться параллельно, а то и в первую очередь. По факту же мы часто имеем ситуацию, когда зарядное устройство делается уже в спешке и постфактум, что конечно же отображается на функционировании всей аккумуляторной системы. Некоторые производители часто не догадываются о сложностях, которые могут возникнуть из-за недоработок в зарядных устройствах, особенно при зарядке в неблагоприятных условиях.

Рисунок 1: Аккумулятор и зарядное устройство должны взаимодействовать словно тяговая лошадь и повозка. Друг без друга они не обеспечат нужного результата.

Зарядные устройства для аккумуляторов на основе свинца и лития работают по специальному алгоритму – CC/CV (constant current/constant voltage – с англ. «постоянный ток/постоянное напряжение»). Значение силы тока зарядки постоянно, но при достижении аккумулятором определенного значения напряжения происходит понижение зарядного тока. Каждая электрохимическая система имеет свои определенные значения зарядных токов и напряжений.

Аккумуляторы на основе никеля заряжаются постоянным током без привязки к показателю напряжения аккумулятора. Обнаружение полного заряда фиксируется небольшим падением напряжения после периода устойчивого подъема. Зарядное устройство должно уметь быстро прекращать зарядку после индикации полного заряда, так как перезаряд может привести к внештатным ситуациях – короткому замыканию или выходу из строя элементов. Существует также способ определения полного заряда, основанный на изменении скорости роста температуры аккумулятора. Такой метод зарядки для никелевых аккумуляторов известен как dT/dt и хорошо себя показывает в режимах быстрой зарядки.

Повышение температуры при зарядке является нормальным явлением для никелевого аккумулятора, особенно этот эффект заметен при достижении уровня заряда в 70 процентов. Повышение температуры происходит из-за снижения эффективности зарядки, следовательно, зарядный ток должен быть уменьшен для предотвращения повреждения аккумулятора. Зарядное устройство фиксирует все эти температурные изменения и производит зарядку необходимой силой тока. Если же вы заметили, что заряжаемый аккумулятор все равно долгое время имеет повышенную температуру, то это свидетельствует о неправильном алгоритме зарядного устройства, и в таком случае его следует отключить во избежание повреждения аккумулятора.

NiCd и NiMH аккумуляторы не следует оставлять подключенными к зарядному устройству без присмотра в течение недель и месяцев. В случае отсутствия нужды в их эксплуатации, храните их в прохладном месте и заряжайте перед самым использованием.

Аккумуляторы на основе лития должны всегда оставаться прохладными при зарядке. Если вы заметили, что температура заряжаемого аккумулятора повысилась более чем на 10°С в сравнении с температурой окружающей среды, то зарядку следует прекратить. Благодаря встроенной схеме защиты, литий-ионные аккумуляторы не могут быть перезаряжены, соответственно, не имеет значения, подключен или отключен такой аккумулятор от зарядного устройства. Но в случае необходимости длительного хранения литий-ионного аккумулятора, лучше поместить его в прохладное место и зарядить непосредственно перед использованием.

Сборка устройства

Трансформатор

Теперь обо всем по порядку. Силовой трансформатор марки ТС-160 или ТС-180 можно достать из старых черно-белых телевизоров «Рекорд», но такового я не нашел и пошел в радиомагазин. Давайте разглядим его поближе.

Вот лепестки, куда паяются выводы обмоток трансформатора.

А вот здесь прямо на трансформаторе есть табличка,  на каких лепестках какое напряжение. Это значит, что если подать на лепесток № 1 и 8  220 Вольт, то на лепестках №3 и 6 мы получим 33 Вольта и максимальную силу тока в нагрузку 0,33 Ампера и тд. Но нас больше всего интересуют обмотки №13 и 14.  На них мы можем получить 6,55 Вольт и максимальную силу тока 7,5 Ампер.

Для того, чтобы заряжать аккумулятор нам как раз потребуется большая сила тока. Но напряжения то у нас не хватает… Аккумулятор выдает 12 Вольт, но для того, чтобы его зарядить, напряжение зарядки должно превышать напряжение аккумулятора. 6,55 Вольт здесь никак не сгодится. Зарядное устройство нам должно выдавать 13-16 Вольт . Поэтому,  мы прибегаем к очень хитрому решению.

Как вы заметили, трансформатор состоит из двух колон. Каждая колонна дублирует другую колонну. Места, где выходят выводы обмоток пронумерованы. Для того, чтобы увеличить напряжение, нам нужно просто-напросто соединить две обмотки последовательно. Для этого соединяем обмотки 13 и 13′  и снимаем напряжение с обмоток 14 и 14′.  6,55 + 6,55 = 13,1 Вольт.  Вот такое переменное напряжение мы получим.

Диодный мост

Для того, чтобы выпрямить переменное напряжение, мы используем диодный мост. Собираем диодный мост на мощных диодах, потому как через них будет проходить приличная сила тока. Для этого нам потребуются диоды Д242А или какие-нибудь другие, рассчитанные на ток от 5 Ампер. Через наши силовые диоды может течь прямой  ток до 10 Ампер, что идеально подходит нашему самопальному заряднику.

Также можно отдельно купить диодный мост сразу готовым модулем. В самый раз подойдет диодный мост КВРС5010, который можно купить на Али по этой ссылке или в ближайшем радиомагазине

Полностью посаженный аккумулятор обладает низким напряжением. По мере зарядки напряжение на нем становится все больше и больше. Следовательно, у нас сила тока в цепи в самом начале зарядки будет очень большая, а потом пойдет на убыль. Согласно  Закону Джоуля-Ленца, при большой силе тока будет происходить нагрев диодов. Поэтому, чтобы их не спалить, нужно отбирать от них тепло и рассеивать в окружающем пространстве. Для этого нам нужны радиаторы. В качестве радиатора я разобрал нерабочий компьютерный блок питания, разрезал на полоски жестянку и прикрутил к ним по диоду.

Амперметр

Для чего в схеме амперметр? Для того, чтобы контролировать процесс зарядки. Не забудьте подключить амперметр последовательно нагрузке.

Когда аккумулятор полностью разряжен, он начинает жрать (слово «кушать» думаю здесь неуместно) ток. Жрет он порядка 4-5 Ампер. По мере зарядки он кушает все меньше и меньше силы тока. Поэтому, когда стрелка прибора покажет на 1 Ампер, то аккумулятор можно считать заряженным. Все гениально и просто :-).

Крокодилы

Выводим два крокодила для клемм аккумулятора с нашего зарядного устройства. При зарядке не путайте полярность. Лучше как-нибудь пометить их или взять разных цветов.

Если все правильно собрано, то на крокодилах мы должны увидеть вот такую форму сигнала (по идее верхушки должны быть сглажены, так как синусоида), но разве что-то предъявишь нашему провайдеру электричества ))).  В первый раз видите что-то подобное? Бегом сюда!

Импульсы постоянного напряжения лучше заряжают аккумулятор, чем чистый постоянный ток. А как получить чистый постоянный ток из переменного описано в статье  Как получить из переменного напряжения постоянное.

Как работает АКБ

Свинцовые АКБ заряжают током, равным току их 10-часового разряда: 6 А для АКБ на 60 А/ч, 9 А для 90 А/ч, 12 А для 120 А/ч. Больший ток вызовет перегрев и, возможно, вскипание электролита, отчего ресурс батареи резко снижается вплоть до полной негодности. Меньший зарядный ток ресурс АКБ практически не увеличивает, но удлиняет время заряда.

Зарядный ток в АКБ течет обратно рабочему. Важнейшее условие при этом – напряжение на АКБ не должно превысить 2,7 В на банку (8,1 В для 6 В АКБ, 16,2 В для 12 В АКБ, 27 В для 24 В АКБ), иначе начнется химическое разложение электролита, пластин, и АКБ закипит даже при небольшом зарядном токе. Чтобы полностью исключить закипание, допустимое напряжение заряда ограничивают 2,6 В на банку (7,8 В, 15,6 В, 26 В соотв.); при этом недозаряд по энергии составит менее 5% и усиления сульфатации не будет.

Если отключить полностью заряженную АКБ от ЗУ, дать ей остыть и померить напряжение без нагрузки, увидим 2,4 В на банку (6,8 В, 14,4 В, 24 В). В работе при разряде напряжение АКБ плавно падает до 1,8 В на банку (5,4 В, 10,8 В, 21,6 В), после чего батарея считается полностью разряженной. На самом деле в ней остается ок. 25% «закачанной» при заряде энергии, и способы «высосать» ее в экстренной ситуации до последнего эрга есть, но АКБ после этого придется сдать на утилизацию. Выбрасывать нельзя, там свинец.

Температурная зависимость напряжения полностью заряженной АКБ существенна. Если дать заряд на АКБ, еще не остывшую от экстратока разряда (стартер в момент пуска берет до 600 А, а крутящий до 75 А), то напряжение на ней может резко прыгнуть, т.к. отклик свинцового аккумулятора током потребления на скачок приложенного напряжения сильно, по меркам электроники, затянут, до десятков мс. Получим саморазогрев и вскипание электролита на борту. Поэтому в бортсети машины напряжение на АКБ ограничивают 2,35 В на банку (7,05 В, 14,1 В, 23,5 В), что и вызывает хронический недозаряд.

При заряде от внешнего ЗУ напряжение на АКБ ограничивают величиной 2,4 В на банку (6,8 В, 14,4 В, 24 В), т.к. «наливать энергии по горлышко», до 2,6 В на банку, рискованно – АКБ при заряде греется и может уйти в саморазогрев. Полностью АКБ дозаряжают и предохраняют от саморазряда т. наз. током содержания, равным 0,5-1 тока 100-часового разряда (0,3-0,6 А, 0,45-0,9 А и 0,6-1,2 А для АКБ на 60 А/ч, 90 А/ч и 120 А/ч соотв.); напряжение на батарее при этом не должно превысить 2,6 В на банку. Практически для этого в ЗУ ставят защиту от перенапряжения на 15,6 В для 12 В АКБ, 7,8 В и 26 В для 6 В и 24 В АКБ. Если она сработала, АКБ приняла энергии, сколько может, и дальше ее заряжать нельзя.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Основные требования

Самодельные устройства, в отличие от заводских, требуют несколько другого подхода к эксплуатации. У большинства из них отсутствуют многие узлы, помогающие при зарядке и повышающие безопасность. Происходит так преимущественно потому, что мастера, не имея опыта монтажа сложных электронных схем, стремятся упростить конструкцию.

Если приборы автоматического контроля и аварийного отключения отсутствуют, требуется постоянно наблюдать за процессом. Оставлять работающее устройство без присмотра опасно: есть риск повреждения аккумулятора и даже пожара. Поэтому в зарядном устройстве, сделанном самостоятельно, желательно предусмотреть узлы для безопасной автономной работы.

Они должны обеспечить:

  • стабильность вольтажа на выходе;
  • отключение от аккумулятора при превышении зарядного тока или напряжения;
  • самоблокировку — после аварийного отключения устройство самостоятельно запуститься не может;
  • защиту от неправильного подключения полюсов.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.

Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов, идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм2.

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.

На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.

На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.

Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.

А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала вольтметра и амперметра зарядного устройства

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм2.

К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

Нюансы регулировки напряжения на блоке ATX с ШИМ TL494

Главная задача переделки – добиться U = 14,4 В для успешной зарядки изделия. Алгоритм действий:

  1. Провода, присоединённые к плате, отпаяйте. Но зелёный оставьте и припаяйте к «минусу» (это токоведущие площадки, ранее бывшие с проводками тёмного цвета). Такая операция позволит запустить блок.
  2. Возьмите любые провода, припаяйте к той же «массе» и шине +12 В.
  3. Далее придётся работать с ШИМ, конкретно – микросхемой TL494 или её аналогом. Необходимо разыскать 1-й контакт детали (нижний левый).
  4. Переверните плату и просмотрите дорожку, идущую от ножки микросхемы. Вы увидите, что 1-й контакт соединён с тремя резисторами. Нас интересует сопротивление, соединённое с плюсовыми выводами блока. На фото ниже он выделен красным:

Выпаяйте резистор из платы и определите тестером его сопротивление. Например, это 38 кОм (для каждого компьютерного БП цифра своя). Припаяйте пару проводов, как это показано ниже:

Найдите переменное сопротивление с таким же номиналом и припаяйте к этим двум проводкам. Включите БП в сеть и, поворачивая движок компонента, добейтесь напряжения 14,5 В.

Далее нужно выпаять переменное сопротивление и замерить его тестером. Подберите соответствующую деталь – постоянное сопротивление. Можно использовать пару компонентов, спаяв их последовательно. Протестируйте работу устройства. Для удобства стоит привернуть подходящую ручку для переноски и установить амперметр. Но об этом – далее.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

Устройство с плавной подачей тока

Инструкция предполагает монтаж приспособления для пополнения заряда АКБ напряжением в 12 В и емкостью до 120 А/ч с возможностью регулировки и плавной подачи тока. Такое зарядное устройство для аккумулятора своими руками потребует определенного навыка работы с электрическими цепями.

При заряде АКБ применяется импульсная подача электричества, сила которого меняется тиристором. Потребуется встроить в цепь и простой переключатель, усиливающий ток дважды.

Работа прибора проверяется при помощи датчика со шкалой и подвижной стрелкой. Для регулировок потребуется резистор из обычной медной проволочки с сечением 8 мм.

Потребуется и лампочка от 24 до 36 В.

В цепь рекомендуется включить трансформатор, выдающий на выходе со вторичной обмотки от 18 до 24 В при силе тока до 15 Ампер. При отсутствии готовой детали несложно переделать под свои нужды рабочий трансформатор мощностью от 250 до 300 В. На нем оставляют основную обмотку, а вторичную, состоящую из 42 витков, мотают самостоятельно из лакированной проволоки 6 мм.

Тиристор пригоден типа КУ 202 с маркировкой В-Н. Монтаж выполняют на радиатор во избежание перегрева. В качестве VD1 пригоден выпрямительный диод с показателем обратного напряжения от 20 В.

Регулировка собранного по данной схеме прибора заключается в калибровке амперметра. Это делают путем подключения ламп 12 В, общая мощность которых 250 Вт. Ток проверяют по рабочему амперметру.

Общие сведения о процессе зарядки АКБ

Заряд автомобильного аккумулятора необходим при падении напряжения на клеммах менее 11,2 Вольта. Несмотря на то, что аккумуляторная батарея может запустить двигатель автомобиля и при таком заряде, во время длительной стоянки при пониженных напряжениях начинаются процессы сульфатации пластин, которые приводят к потере емкости АКБ.

Поэтому во время зимовки автомобиля на стоянке либо в гараже необходимо постоянно производить подзарядку аккумулятора, следить за напряжением на его клеммах. Более лучший вариант – снять аккумуляторную батарею, занести в теплое место, но все равно не забывать о поддержании его заряда.

Заряд аккумулятора ведется постоянным либо импульсным током. В случае зарядки от источника постоянного напряжения обычно выбирается ток заряда равный одной десятой от емкости АКБ.

Например, если емкость аккумуляторной батареи составляет 60 ампер-часов, ток заряда следует выбирать 6 Ампер. Однако, исследования показывают, что, чем меньше ток заряда, тем наименее интенсивно идут процессы сульфатации.

Мало того, существуют методы десульфатации пластин аккумулятора. Они заключаются в следующем. Сначала АКБ разряжается до напряжения 3 – 5 Вольт большими токами малой длительности. Например такими, как при включении стартера. Затем идет медленный полный заряд током около 1 Ампера. Такие процедуры повторяют 7-10 раз. Эффект десульфатации от этих действий есть.

Практически на таком принципе основаны десульфатирующие импульсные зарядные устройства. АКБ в таких приборах заряжается импульсным током. За период зарядки (несколько миллисекунд) на клеммы аккумулятора подается разрядный короткий импульс обратной полярности и более длительный зарядный прямой полярности.

Очень важно в процессе заряда не допустить эффекта перезаряда аккумуляторной батареи, то есть момента, когда он зарядится до предельного напряжения (12,8 – 13,2 Вольта в зависимости от типа АКБ). Это может вызвать закипание аккумулятора, увеличение плотности и концентрации электролита, необратимые разрушения пластин

Именно поэтому заводские зарядные устройства снабжены электронной системой контроля и отключения

Это может вызвать закипание аккумулятора, увеличение плотности и концентрации электролита, необратимые разрушения пластин. Именно поэтому заводские зарядные устройства снабжены электронной системой контроля и отключения.

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.


Импульсное зарядное устройство_схема_описание

Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.

Принципиальная схема зарядного устройства изображена на следующем рисунке:

Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.

Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 — ограничители токов баз Т1 и Т2 соответственно.

Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4)

Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц

Лампа HL1 – визуальный контроль работы зарядного устройства. На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.

Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.

Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:

● Обмотка III — 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.

● Обмотки I, II, IV — по 2 витка каждая, можно использовать жилы от телефонного кабеля.

● Обмотки V, VI — по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.

В результате должно получиться примерно так:


Импульсный трансформатор для зарядного устройства

Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009. Транзисторы Т3 и Т4 — биполярные, 2SC1815. Можно заменить на КТ315. Транзистор T5 — полевой, типа N302AP, тоже можно установить на небольшой радиатор. Диодный мост D1 — KBP208G, или аналогичный на ток 10 Ампер. Диоды D2 и D3 — 1N4007, можно заменить на отечественные КД226Д. Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 — типа МЛТ-0,25. Резисторы R2, R3, R6 — типа МЛТ-0,5. Конденсаторы С1 и С2 — 33 мкФ, на напряжение не ниже 250 Вольт. Конденсатор С3 — 2200 пФ на 400 Вольт.

Ниже на снимках показан внешний вид печатной платы:


Печатная плата зарядного устройства


Печатная плата зарядного устройства_сторона элементов

.

Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):


Плата импульсного ЗУ_вид со стороны элементов


Плата импульсного ЗУ_вид со стороны дорожек


Импульсное зарядное устройство в сборе

.

Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500

Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Далее изготовленная плата устанавливается в корпус и производится подключение всех выводов согласно схеме.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Особенности зарядки АКБ самодельным ЗУ

Как правильно заряжать автомобильный аккумулятор с помощью самодельного прибора?

Процесс зарядки будет идентичным использованию фирменного ЗУ, но есть определенные нюансы, которые нужно учитывать:

  1. Во-первых, ни в коем случае нельзя перепутать полярность при подключении, в противном случае это может привести к разрушению пластин внутри АКБ. Положительный зажим всегда подключается к плюсу АКБ, а отрицательный, соответственно, к минусу.
  2. Во-вторых, никогда не проверяйте самодельное ЗУ на искру. Если вы решите замкнуть провода на выводах батареи, это может привести если не к выходу прибора из строя, то к его возможным неисправностям в будущем.
  3. В-третьих, запомните — когда зарядный прибор подключается к АКБ, он должен быть отключен от бытовой сети. Только после того, как вы соедините зажимы с аккумуляторными выводами, вилку от ЗУ можно будет включить в розетку.
  4. Если говорить о разработке самого зарядного прибора, то в ходе работ, а также его использования нужно быть наиболее аккуратным. При эксплуатации девайса необходимо руководствоваться всеми нормами безопасности. Как показывает практика, уже не раз происходили случаи, когда люди, допуская ошибки в ходе разработки и сборки прибора, не только выводили из строя АКБ при подключении, но и сами травмировались. Так что все действия осуществляйте в соответствии со схемой.
  5. Так как вы станете обладателем самодельного ЗУ, в ходе использования за ним в любом случае необходимо следить. Не уходите из дома, пока прибор включен в сеть и заряжает аккумулятор.
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий